Investigation on distribution of radioactive substances in Fukushima
(9) Analysis of temporal changes in ambient dose equivalent rates in forests over 6 years following the FDNPP accident

*Alex Malins¹, Naohiro Imamura², Tadafumi Niizato¹, Minsik Kim¹, Kazuyuki Sakuma¹, Yoshiki Shinomiya¹, Satoru Miura², Masahiko Machida¹

¹Japan Atomic Energy Agency (JAEA), ²Forestry and Forest Products Research Institute (FFPRI)

Abstract
We analyzed changes in ambient dose equivalent rates ($H^*(10)$) between 2011 and 2017 in forests in Fukushima Prefecture. PHITS was used to calculate the effect of re-distribution of 134Cs and 137Cs over time within forests on $H^*(10)$. Transfer of radiocesium from the crowns of evergreen coniferous trees to the forest floor appeared to cause slower declines in $H^*(10)$ at 1 m height initially after March 2011 than expected by the rate of radiocesium decay.

Keywords: forest, environment, ambient dose equivalent, radiocesium, 134Cs, 137Cs, FDNPP accident, PHITS, Monte Carlo, simulation

1. Introduction
Ambient dose equivalent rates ($H^*(10)$) have been observed to decrease more slowly in forests than in other areas since the 2011 Fukushima Daiichi Nuclear Power Plant (FDNPP) accident [1]. Moreover, between 2011 and 2013, $H^*(10)$ at 1 m above the ground in some forests decreased slower than the rate of radioactive decay of the radiocesium fallout [2]. The reasons for this behavior were examined by using radiation transport simulations.

2. Methods
Forests in Fukushima Prefecture monitored by FFPRI [3] were modelled with the PHITS code [4]. We calculated the contributions to $H^*(10)$ at 1 m above the ground from 134Cs and 137Cs in the canopy, trunks, organic layer, and soil layers separately. The results were compared to $H^*(10)$ measurements from hand-held survey meters.

3. Results
Yearly fluctuations in the measured 134Cs and 137Cs inventories in forests meant the inventories had to be normalized to a common baseline to understand the effects of re-distribution of 134Cs and 137Cs within forests on $H^*(10)$. The results show that changes in the distribution of 134Cs and 137Cs on the centimeter scale within the organic layer and soil affect the temporal trends of $H^*(10)$ in forests.

4. Conclusions
The slower decreases in $H^*(10)$ in forests compared to other land uses was a consequence of the high retention of 134Cs and 137Cs by forests, and the tendency of 134Cs and 137Cs to remain near the top surface of forest soil. Radiocesium transfer from the crowns of evergreen coniferous trees to the forest floor explained a slower rate of decline in $H^*(10)$ between 2011 and 2013 than expected by the rate of radioactive decay.

References