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We consider three popular model glassformers, the Kob-Andersen and Wahn-
ström binary Lennard-Jones models and weakly polydisperse hard spheres. Al-
though these systems exhibit a range of fragilities, all feature a rather similar
behaviour in their local structure approaching dynamic arrest. We use the dy-
namic topological cluster classification to extract a locally favoured structure
which is particular to each system. These structures form percolating networks,
however in all cases there is a strong decoupling between structural and dynamic
lengthscales. We suggest that the lack of growth of the structural lengthscale may
be related to strong geometric frustration.

18.1 Introduction

Among the challenges of the glass transition is how solidity emerges with little
apparent change in structure [5]. However, using computer simulation and with
the advent of particle-resolved studies in colloid experiments [38], it has become
possible to construct and use higher-order correlation functions [37, 56, 77, 83]
which can identify local geometric motifs in supercooled liquids, long-since
thought to suppress crystalisation in glassforming systems [34].
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Figure 18.1: Schematic of geometric frustration limiting the growth of domains
of locally favoured structures. Solid line is conventional CNT with the first two
terms in Eq. 18.1 which would occur in the non-frustrated case. Dashed line
denotes the effect of the third term, leading to a preferred lengthscale for the
LFD domain ξ∗D.

Such measurements have correlated the occurence of geometric motifs and
slow dynamics in a number of glassformers in both particle-resolved experiments
on colloids [49, 70, 86] and simulation [24, 39, 67, 68, 85]. Identification of these
motifs has led to the tantalising prospect of finding a structural mechanism for
dynamic arrest. It has been demonstrated that at sufficient supercooling, there
should be a coincidence in structural and dynamic lengths, associated with
regions undergoing relaxation for fragile glassformers [61]. Thus recent years
have seen a consideration effort devoted to identifying dynamic and structural
lengthscales in a range of glassformers. The jury remains out concerning the co-
incidence of structural and dynamic lengthscales, with some investigations find-
ing agreement between dynamic and structural lengthscales in experiment [51]
and simulation [41, 42, 62, 63, 72, 75, 82, 91], while others find that the while
the dynamic lengthscale increases quite strongly, structural correlation lengths
grow weakly if at all [12–14,22,36,47,54,55]. Other interpretations include de-
composing the system into geometric motifs and considering the motif system.
One such effective system exhibits no glass transition at finite temperature [25].

Here we consider the approach of geometric frustration [84]. Geometric
frustration posits that upon cooling, a liquid will exhibit an increasing number
of locally favoured structures (LFS), which minimise the local free energy. In
some unfrustrated curved space, these LFS tessellate, and there is a second
order phase transition to an LFS-phase. In Euclidean space, frustration limits
the growth of the LFS domains. As detailed in section 18.2, the free energy
associated with the growth of these LFS domains may be related to an addi-
tion term to classical nucleation theory (CNT), as illustrated schematically in
Fig. 18.1.

Now in 2d monodisperse hard discs, the locally favoured structure (hexag-
onal order) is commensurate with the crystal, the transition is weakly first order
to a hexatic phase which is itself continuous with the 2d crystal [4, 26]. Thus
in 2d one must curve space to introduce geometric frustration. This has been
carried out by Sausset et al. [74], curving in hyperbolic space, where the degree
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of curvature can be continuously varied. Weakly curved systems have a strong
tendency to hexagonal ordering, which was controllably frustrated by the cur-
vature. However, the upper bound on all correlation lengths was dictated by
the curvature in this system. Thus frustration prevents the growth of any LFS
domains beyond the lengthscale set by the curvature [72, 73] and no divergent
structural correlation lengths as envisaged by Montanari and Semmerjian [61]
could be found.

In 3d, 600 perfect (strain-free) tetrahedra formed from 120 particles can be
embedded on the surface of a four-dimensional sphere [15,16]. Each particle in
this 4d Platonic solid or “polytope” is at the centre of a 12-particle icosahedrally
coordinated shell, and indeed simulations indicate a continuous transition in
this system [64,65,78]. However, a 120 particle system is clearly inappropriate
to any investigation of increasing lengthscales.

Here we provide a different perspective on geometric frustration. We carry
out simulations on a number of well-known glassformers of varying degrees of
fragility: slightly polydisperse hard spheres, and the Kob-Andersen [44] and
Wahnström binary Lennard-Jones mixtures [87]. In each system we identify a
system-specific locally favoured structure [56], which becomes more prevalent
as the glass transition is approached. We measure the dynamic correlation
length ξ4 and identify a related structural correlation length ξLFS [54, 55]. We
show that the dynamic correlation length grows much more than the structural
correlation length associated with the LFS in each system. Although the LFS
cannot fill 3d space, they instead form system spanning networks. We conclude
that the growth of LFS in all these cases is strongly frustrated. Given the
system specific nature of the LFS, we speculate that an LFS-phase might not
in principle require curved space and we suggest that geometric frustration
might be considered not as a function of curvature but as composition.

This paper is organised as follows. In section 18.2 we briefly consider some
pertinent aspects of geometric frustration theory, followed by a description of
our simaultions in section 18.3. The results consist of a connection between the
fragility of the systems studied placed in the context of some molecular glass-
formers in section 18.4.1. In section 18.4.2 we detail how the locally favoured
structures are identified and discuss the increase in LFS upon supercooling
in section 18.4.3. In section 18.4.4 we show structural and dynamic correla-
tion lengths, before discussing our findings in section 18.5 and concluding in
section 18.6.

18.2 Geometric Frustration

For a review of geometric frustration, the reader is directed to Tarjus et al. [84].
The effects of frustration upon a growing domain of locally favoured structures
may be considered as defects, which typically interact in a Coulombic fashion.
Under the assumpton that frustration is weak, this argument leads to scaling
relations for the growth of domains of LFS, whose (linear) size we denote as
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ξD. Weak frustration requires that its effects only become apparent on length-
scales larger than the constituent particle size such that σ << ξD. Geometric
frustration imagines an avoided critical point, at T cx , which corresponds to the
phase transition to an LFS state in the unfrustrated system. At temperatures
below this point, growth of domains of the LFS in the frustrated system may
follow a classical nucleation theory (CNT) like behaviour, with an additional
term to account for the frustration. In d = 3 the free energy of formation of a
domain size ξD of locally favoured structures thus reads

FD(ξD, T ) = γ(T )ξθD − δµ(T )ξ3D + sfrust(T )ξ
5
D (18.1)

where the first two terms express the tendency of growing locally preferred order
and they represent, respectively, the energy cost of having an interface between
two phases and a bulk free-energy gain inside the domain. Equation 18.1 is
shown schematically in Fig. 18.1. The value of θ may be related to Adam-Gibbs
theory [1] or Random First Order Theory (RFOT) [52]. Without the third term
long-range order sets in at T = T cx , in the unfrustrated system. Geometric
frustration is encoded in the third term which represents the strain free energy
resulting from the frustration. This last term is responsible for the fact that the
transition is avoided and vanishes in the limit of non-zero frustration [84]. While
actually evalulating the coefficients in Eq. 18.1 is a very challeging undertaking,
one can at least make the following qualitative observation. In the case of weak
frustration, one expects extended domains of LFS. However, in the case of
strong frustration, one imagines rather smaller domains of LFS, as the third
term in Eq. 18.1 will tend to dominate. In 2d, the control of domain growth by
frustration induced by curving space is precisely what is found [72,73].

18.3 Simulation Details

Our hard sphere simulations use the DynamO package [3]. This performs event-
driven MD simulations, which we equilibrate for 300τα, in the NVT ensemble,
before sampling in the NVE ensemble. We use two system sizes ofN = 1372 and
N = 10976 particles, in a five-component equimolar mixture whose diameters
are [0.888, 0.95733, 1.0, 1.04267, 1.112], which corresponds to a polydispersity
of 8%. We have never observed crystallisation in this system. Given the mod-
erate polydispersity, we do not distinguish between the different species. We
use smaller systems of N = 1372 to determine the structural relaxation time
and the fraction of particles in locally favoured structures. Static and dynamic
lengths are calculated for larger systems of N = 10976. Further details may be
found in ref. [23, 71].

We also consider the Wahnström [87] and Kob-Andersen [44] models in
which the two species of Lennard-Jones particles interact with a pair-wise po-
tential,

uLJ(r) = 4ϵαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]

(18.2)
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where α and β denote the atom types A and B, and rij is the separation.
In the equimolar Wahnström mixture, the energy, length and mass values are
εAA = ϵAB = εBB , σBB/σAA = 5/6, σAB/σAA = 11/12 and mA = 2mB

respectively.
The Kob-Andersen binary mixture is composed of 80% large (A) and 20%

small (B) particles possessing the same mass m [44]. The nonadditive Lennard-
Jones interactions between each species, and the cross interaction, are given by
σAA = σ, σAB = 0.8σ, σBB = 0.88σ, ϵAA = ϵ, ϵAB = 1.5ϵ, and ϵBB = 0.5ϵ.

For both Lennard-Jones mixtures, we simulate a system of N = 10976
particles for an equilibation period of 300τAα in the NVT ensemble and sample
for a further 300τAα in the NVE ensemble. The results are quoted in reduced
units with respect to the A particles, i.e. we measure length in units of σ, energy
in units of ϵ, time in units of

√
mσ2/ϵ, and set Boltzmann’s constant kB to

unity. Further details of the simulation of the Wahnström and Kob Andersen
models may be found in [54,55] respectively.

The α-relaxation time τAα for each state point is defined by fitting the
Kohlrausch-Williams-Watts stretched exponential to the alpha-regime of the
intermediate scattering function (ISF) of the A-type particles in the case of the
Lennard-Jones mixtures and of all particles in the case of the hard spheres.
Further details may be found in [54,55].

18.4 Results

18.4.1 Fragility

We fit the structural relaxation time to the Vogel-Fulcher-Tamman (VFT)
equation

τα = τ0 exp

[
A

(T − T0)

]
. (18.3)

Here τ0 is a reference relaxation time, the parameter A is related to the fragility
D = A/T0 and T0 is temperature of the “ideal” glass transiton, at which τα
diverges. Of course experimental systems cannot be equilibrated near T0, so the
experimental glass transition Tg is defined where τα exceeds 100 s in molecular
liquids. In the Angell plot in Fig. 18.2 silica and ortho-terphenyl are fitted with
Eq. 18.3, along with our data for the Wahnström and Kob-Andersen mixtures.
For our data, we obtain an estimate of Tg as the temperature at which τα/τ0 ≈
1015 with the VFT fit. We apply the VFT fit only for T < 1, which denotes
the onset temperature for the activated dynamics in which VFT is appropriate.
Higher temperatures exhibit an Arrhenius-like behaviour [54,55]. The fragility
is then D = A/T0. Details of the fitted, and literature [2,8,69] values are given
in Table 18.1.

In the case of hard spheres, the control parameter is packing fraction
ϕ and temperature plays no role. It has been shown that the VFT equation
may be rewritten with the reduced pressure Z = p/(ρkBT ) where p is the
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Figure 18.2: The Angell plot. Data are fitted to VFT (Eq. 18.3) and Eq. 18.4)
in the case of hard spheres. HS denotes hard spheres where the control pa-
rameter is volume fraction ϕ. The “experimental glass transition” for hard
spheres ϕg and the Lennard-Jones models are defined in the text. Data for
SiO2 and orthorterphenyl (OTP) are quoted from Angell [2] and Berthier and
Witten [8]. For the systems studied here, τ0 is scaled to enable data collapse at
Tg/T = ϕ/ϕg → 0.

pressure [8]. In addition, the VFT form may be generalised with an exponent
δ in the denominator [8, 9].

τα = τ0 exp

[
A

(ϕ0 − ϕ)δ

]
. (18.4)

We have investigated fitting with Z and with ϕ, and have found little
difference in the values of ϕ0 we have determined. We have also investigated
setting δ = 2.2, where we find ϕ0 ≈ 0.630, a slightly lower value than that found
previously [8, 9], which may reflect our choice of hard sphere system. At 8%,
ours is less polydisperse than others [8, 9], and therefore might be expected to
have a lower packing fraction for random close packing (RCP) and consquently
lower values for ϕ0. In any case, we have found a better fit over a larger range
of ϕ when δ = 1, and quote those values in Table 18.1. We also define a ϕg
using the VFT equation for hard spheres (Eq. 18.4) in an analogous way to
that which we used to determine Tg for the Lennard-Jones mixtures.

As the values in Table 18.1 and Fig. 18.2 show, the Kob-Andersen, Wahn-
ström and hard sphere systems exhibit progressively higher fragilities. In Fig.
18.2, the Kob-Andersen system sits close to ortho-terphenyl in the range of su-
percoolings accessible to our simuations. The fragility of the former we find to
be 3.62, while the latter is quoted to be around 10 [8,69]. For our VFT fit to the
Kob-Andersen mixture we took a literature value [76] of T0 = 0.325, however
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Table 18.1: Transition temperatures, fragilities and locally favoured structures
for systems in Fig. 18.2. KA denotes Kob-Andersen mixture, Wahn Wahnström
mixture and HS hard spheres. Note that, as a strong liquid, the fragility of silica
is poorly defined [2].
system T0, ϕ0 Tg, ϕg D LFS reference
SiO2 * 820-900K ∼60 [8]
OTP 202K 246K ∼10 [69]
KA 0.325 0.357±0.005 3.62±0.08 11A [55], this work

Wahn 0.464±0.007 0.488±0.005 1.59±0.13 13A [54], this work
HS 0.606±0.003 0.599±0.003 0.395±0.041 10B [80], this work

a free fit of our data leads to a fragility D ≈ 7.06, close to the orthoterphenyl
(OTP) value. Since OTP is at the fragile end of molecular glassformers [2],
Fig. 18.2 emphasises that the models considered here are extremely fragile
when compared to molecular systems.

18.4.2 Identifying the Locally Favoured Structure

In order to identify locally favoured structures relevant to the slow dynam-
ics, we employ the dynamic topological cluster classification algorithm [54,55].
This measures the lifetimes of different clusters identified by the topological
cluster classification (TCC). The TCC identifies a number of local structures

Figure 18.3: The structures detected by the TCC [56]. Letters correspond to
different models, numbers to the number of atoms in the cluster. K is the Kob-
Andersen model [55], W is the Wahnström model [54]. Outlined are the locally
favoured structures identified for the Kob-Andersen model (11A), Wahnström
model and hard spheres (10B). Other letters correspond to the variable-ranged
Morse potential, letters at the start of the alphabet to long-ranged interactions,
later letters to short-ranged interactions, following Doye et al. [21]. Also shown
are common crystal structures.
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as shown in Fig. 18.3, including those which are the minimum energy clusters
for m = 5 to 13 Kob-Andersen [55] and Wahnström [54] particles in isola-
tion. In the case of the hard spheres, minimum energy clusters are not defined.
However we have shown that the Morse potential, when truncated at its min-
imum in a similar fashion to the Weeks-Chandler-Andersen treatment for the
Lennard-Jones model [88] provides an extremely good approximation to hard
spheres [79]. Clusters corresponding to the (full) Morse potential have been
identified by Doye et al. [21] are included in the TCC. The first stage of the
TCC algorithm is to identify the bonds between neighbouring particles. The
bonds are detected using a modified Voronoi method with a maximum bond
length cut-off of rc = 2.0 [56].

In the case of the Kob-Andsersen mixture, a parameter which controls
identification of four- as opposed to three-membered rings fc is set to unity thus
yielding the direct neighbours of the standard Voronoi method. Under these
conditions, 11A bicapped square antiprism clusters are identified [55,56], which
have previously been found to be important in the Kob-Andersen mixture [18].
For the Wahnström mixture and the hard spheres, the four-membered ring
parameter fc = 0.82 which has been found to provide better discrimination
of long-lived icosahedra [54], which have been identified in the Wahnström
mixture [18].

In the dynamic TCC, a lifetime τℓ is assigned to each “instance” of a
cluster, where an instance is defined by the unique indices of the particles within
the cluster and the type of TCC cluster. Each instance of a cluster occurs
between two frames in the trajectory and the lifetime is the time difference
between these frames. Any periods where the instance is not detected by the
TCC algorithm are shorter than τα in length, and no subset of the particles
becomes un-bonded from the others during the lifetime of the instance. The
longest lived clusters we interpret as locally favoured structures [54,55].

The measurement of lifetimes for all the instances of clusters is intensive
in terms of the quantity of memory required to store the instances, and the
number of searches through the memory required by the algorithm each time
an instance of a cluster is found to see if it existed earlier in the trajectory.
Therefore we do not measure lifetimes for the clusters where Nc/N > 0.8,
since the vast majority of particles are found within such clusters and it is not
immediately clear how dynamic heterogeneities could be related to structures
that are pervasive throughout the whole liquid. Here Nc/N is the fraction of
particles which are part of a given cluster.

We plot the results of the dynamic TCC in Fig. 18.4 for a low temperature
state point for the Lennard-Jones mixtures and for ϕ = 0.57 in the case of
hard spheres. This clearly shows the most persistent or the longest lived of
the different types of clusters in each system. All three systems exhibit rather
similar behaviour, namely that the long-time tail of the autocorrelation function
indicates that some of these clusters preserve their local structure on timescales
far longer than τα, and these we identify as the LFS. Thus for the Kob-Andersen
mixture, we identify 11A bicapped square antiprisms [55], for the Wahnström
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Figure 18.4: Lifetime autocorrelation functions for the TCC clusters P (τℓ ≥ t).
(a) Kob-Andersen mixture T = 0.498, (b) Wahnström mixture T = 0.606 and
(c) hard spheres ϕ = 0.57. Particle colours show how the cluster is detected by
the TCC [56].

model 13A icosahedra [54] and for hard spheres 10B. In the hard sphere case,
other clusters are also long-lived: 13A, 12B and 12D. However these latter are
only found in small quantities (. 2%), unlike 10B which can account for up
to around 40% of the particles in the system. Moreover, a 10B cluster is a
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13A cluster missing three particles from the shell, thus all 13A also correspond
to 10B by construction. Related observations have been made concerning the
Kob-Andersen [55] and Wahnström mixtures [54].

The fast initial drops of P (τℓ ≥ t) reflect the existence of large numbers of
clusters with lifetimes τℓ ≪ τAα . The lifetimes of these clusters are comparable
to the timescale for beta-relaxation where the particles fluctuate within their
cage of neighbours. It could be argued that these clusters arise spuriously due to
the microscopic fluctuations within the cage, and that the short-lived clusters
are not representative of the actual liquid structure. However almost no LFS
are found at higher temperatures (or lower volume fraction in the case of hard
spheres), cf. Fig. 18.6, where microscopic fluctuations in the beta-regime also
occur. We have not yet found a way to distinguish between the short and
long-lived LFS structurally, so we conclude that the measured distribution of
LFS lifetimes, which includes short-lived clusters, is representative of the true
lifetime distribution.

18.4.3 Fraction of Particles Participating Within LFS

Having identified the locally favoured structure for each system, we consider
how the particles in the supercooled liquids are structured using the topological
cluster classification algorithm [56]. We begin with the snapshots in Fig. 18.5.
It is immediately clear that the spatial distribution of the LFS is similar in all
three systems. In all cases, at weak supercooling isolated LFS appear, becoming
progressively more popular upon deeper supercooling. At the deeper quenches,
the LFS percolate, but the “arms” of the percolating network are around three-
four particles thick. One caveat to this statement is that at high temperature,
the Kob-Andersen mixture exhibits more LFS than a comparable state point
in the Wanstroöm mixture. Furthermore, the geometry of the LFS domains is
clearly much more complex than spherical nuclei assumed in classical nucleation
theory (Fig. 18.1).

In Fig. 18.6 we plot the fraction of particles detected within LFS for each
system NLFS/N . We consider the scaled structural relaxation time τα/τ0 (see
Fig. 18.2) in Fig. 18.6(a). In Fig. 18.6(b) we show the population of LFS as a
function of the degree of supercooling, Tg/T and ϕ/ϕg for the Lennard-Jones
and hard sphere systems respectively. We find that the hard spheres show a
dramatic increase in LFS, which appears to begin to level off for high values
of τα. Note that by construction, NLFS/N ≤ 1. This levelling off has recently
been observed in biased simulations of the Kob-Andersen system, which exhibits
a first-order transition in trajectory space to a dynamically arrested LFS-rich
phase [76]. Our simulations of the two Lennard-Jones systems do not reach such
deep supercoolings, so we have not yet determined whether they exhibit the
same behaviour. However the increase of LFS in the case of the Kob-Andersen
mixture is rather slower than the hard spheres, and the Wahnström mixture is
intermediate between the two. This correlates with the fragilities of these three
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Figure 18.5: Snapshots of locally favoured structures in the three systems con-
sidered. In all cases particles identified in LFS are drawn to 80% actual size
and coloured, other particles are rendered at 10% actual size and are grey. Top
row: Kob-Andersen mixture for T = 1, 0.6 and 0.5 from left to right. Middle
row: Wahnström mixture for T = 1.0, 0.625, 0.606 from left to right. Bottom
row: Hard spheres for ϕ = 0.4, 0.5 and 0.55 from left to right.

systems, Fig. 18.2. This connection between structure and fragility has been
previously noted in the case of the two Lennard-Jones mixtures [18].

Plotting as a function of supercooling, in Fig. 18.6(b), we find that the
Kob-Andersen mixture shows a slow increase in LFS population which begins
a quite weak supercooling, while hard spheres (recalling that here the control
parameter is ϕ) show a much more rapid growth which begins at much deeper
supercooling. The Wahnström mixture is again intermediate between these two.
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Figure 18.6: Fraction of particles in locally favoured structures NLFS/N . (a)
NLFS/N as a function of τα/τ0. (b) NLFS/N as a function of Tg/T and ϕ/ϕg
for the Lennard-Jones and hard sphere systems respectively. In (a) τα/τ0 are
offset for clarity.

Comparing to Fig. 18.6(a), the differences in Fig. 18.6(b) follow naturally from
the markedly different fragilities of these systems.

18.4.4 Static and Dynamic Lengthscales

Dynamic correlation length. — We now turn to the topic with which we opened
this article, the coincidence or otherwise of static and dynamic lengthscales in
these systems. In order to do this, we calculate both, beginning with the dy-
namic correlation length ξ4, following Lacević et al. [50]. We provide a more
extensive description of our procedure elsewhere [54]. Briefly, the dynamic cor-
relation length ξ4 is obtained as follows. A (four-point) dynamic susceptibility
is calculated as

χ4(t) =
V

N2kBT
[⟨Q(t)2⟩ − ⟨Q(t)⟩2], (18.5)

where

Q(t) =
1

N

N∑
j=1

N∑
l=1

w(|rj(t+ t0)− rl(t0)|). (18.6)

The overlap function w(|rj(t + t0) − rl(t0)|) is defined to be unity if |rj(t +
t0)− rl(t0)| ≤ a, 0 otherwise, where a = 0.3. The dynamic susceptibility χ4(t)
exhibits a peak at t = τh, which corresponds to the timescale of maximal
correlation in the dynamics of the particles. We then construct the four-point
dynamic structure factor S4(k, t):

S4(k, t) =
1

Nρ
⟨
∑
jl

exp[−ik · rl(t0)]w(|rj(t+ t0)− rl(t0)|)

×
∑
mn

exp[ik · rn(t0)]w(|rm(t+ t0)− rn(t0)|)⟩,
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where j, l, m, n are particle indices and k is the wavevector. For time τh, the
angularly averaged version is S4(k, τh). The dynamic correlation length ξ4 is
then calculated by fitting the Ornstein-Zernike (OZ) function to S4(k, τh), as
if the system were exhibiting critical-like spatio-temporal density fluctuations,

S4(k, τh) =
S4(0, τh)

1 + (kξ4(τh))2
, (18.7)

to S4(k, τh) for k < 2 [50].
The resulting ξ4 are plotted in Fig. 18.7. We see in Fig. 18.7(a) that, as a

function of τα/τ0, the ξ4 for both Lennard-Jones systems coincide. The dynamic
correlation length for the hard spheres rises more slowly across a wide range
of τα/τ0. As was the case with the population of LFS [Fig. 18.6(b)], plotting
ξ4 as a function of the degree of supercooling reflects the difference in fragility
between these systems [Fig. 18.7(b)]. For the Kob-Andersen mixture the ξ4 rises
at comparatively weak supercooling, for hard spheres much more supercooling
is needed to see a change in ξ4.

Now the scaling of ξ4 with relaxation time has been examined previously.
In the case of the Wahnström mixture, Lac̆ević et al. [50] found behaviour
consistent with divergence of ξ4 at the mode-coupling temperature. Whitelam
et al. [89] obtained a ξ4 scaling consistent with dynamic faclitation theory
for the Kob-Andersen mixture. More recently, Flenner et al. [29] found ξ4 ∼
(τAα )γ with γ ≈ 0.22 for the Kob-Andersen system. Kim and Saito have also
found behaviour consistent with power law scaling for both Kob-Andersen and
Wahnström mixtures [43]. In the case of hard spheres Flenner and Szamel
found ξ4 ∼ ln(τα) [33]. In Fig. 18.7 we find a slightly larger value for the
exponent γ ≈ 0.3 for the Lennard-Jones models but find similar behaviour for
hard spheres as that noted by Flenner et al. [33]. However, our hard sphere
system is rather more monodisperse than the 1:1.4 binary mixture they used,
which might account for the fact that our data is not entirely straight in the
semi-log plot of Fig. 18.7. Moreover hard spheres, and other systems do not
always exhibit the same scaling for all τα [31, 33]. In any case, we emphasise
that such “scaling” is hard to assess on such small lengthscales (the entire
range of ξ4 is less than a decade), and extraction of reliable values for ξ4 is far
from trivial in finite-sized simulations [28,40]. We thus believe our finding of a
differing exponent in the case of the Kob-Andersen mixture to that of Flenner
and Szamel et al. [29] reflects the challenges of extracting such values.

Static correlation length. — We now consider how to determine a static
correlation length for the domains of locally favoured structures. It is clear from
Fig. 18.5 that the LFS percolate. Given that all state points we have been able to
access are necessarily far from T0, and that the LFS themselves have a limited
lifetime (Fig. 18.4), the existence of a percolating network of LFS does not
itself imply arrest. However, as has been previously noted by others [18,24] and
ourselves [54, 55], a percolating network of LFS has the potential to accelerate
increase of τα upon supercooling. This is because the particles in the LFS act
to slow down their neighbours and because domains of LFS last longer than
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Figure 18.7: Dynamic ξ4 and static ξLFS lengths for the three systems consid-
ered. (a) ξ4 and ξLFS as a function of τα/τ0. (b) ξ4 and ξLFS as a function of
Tg/T and ϕ/ϕg for the Lennard-Jones and hard sphere systems respectively.
In (a) the dashed lines correspond to ξ4 ∼ (τAα )γ with γ = 0.3 and ξ4 ∼ ln(τα)
for KA (green) and hard spheres (pink) as indicated. In (a) τα/τ0 are offset for
clarity.

isolated LFS [54,55]. However, identifying a lengthscale with the domain size of
LFS, for example the radius of gyration, leads to divergence in the supercooled
regime [54,55].

We thus turn to a method which allows a natural comparison with the
dynamic lengthscale ξ4. We define a structure factor restricted to the particles
identified within LFS:

SLFS(k) =
1

Nρ

⟨
NLFS∑
j=1

NLFS∑
l=1

exp[−ik · rj(t0)] exp[ik · rl(t0)]

⟩
, (18.8)

where NLFS is the number of particles in LFS. We then fit the Ornstein-Zernike
equation (Eq. 18.7) to the low-k behaviour of the angularly-averaged SLFS(k)
in order to extract a structural correlation length ξLFS. This procedure is akin
to the calculation of the dynamic lengthscale ξ4: first a structure factor is cal-
culated from a selected fraction of the particles (either immobile or structured),
and the Ornstein-Zernike expression used to extract a correlation length.

These ξLFS are plotted in Fig. 18.7 for the three systems we study. Like
the dynamic correlation lengths, the structural correlation lengths increase on
cooling for the Lennard-Jones systems, while the hard spheres show almost no
change upon compression. However the manner in which these lengths increases
is quite different. The main result is that the growth in the dynamic correlation
length ξ4 is not matched by the growth in the structural correlation length ξLFS.
Indeed ξLFS ∼ σ through the accessible regime.
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18.5 Discussion

Geometric frustration is strong in model fragile glassforming liquids. — Figure
18.7 provides a key result of this work. The correlation length related to the
domains of locally favoured structures is short, around one particle diameter.
Reference to Eq. 18.1 and Fig. 18.1 indicates that, according to our linear
measure, geometric frustration is strong in these systems, in other words that
ξ∗D = ξLFS ≈ σ. Frustration has been demonstrated elegantly in curved space
in 2d, where it has been controlled by the degree of curvature [72–74]. However
in 3d, the discussion involving 120 particles embedded on the surface of a
four-dimensional sphere formed perfect icosahedra [15, 16] assumes these are
monodisperse spheres. In addition to the fact that monodisperse spheres are
usually poor glassformers, we have demonstrated here that very often, the LFS
are not icosahedra. Moreover, even in the case of the Wahnström mixture, it
is far from clear that the icosahedra formed would tessellate the surface of a
hypersphere with no strain as they are comprised of particles of differing sizes.

We suggest that firstly, other curved space geometries may enable bi-
nary Lennard-Jones models to tessellate without strain. Secondly, we speculate
that instead it may be possible to think of frustration, not with respect to
curved space but rather with respect to systems with different composition in
which the LFS can tessellate, even in Euclidean space. Indeed, a number of the
clusters identified by the topological cluster classification (Fig. 18.3) have the
potential to tessellate. In particular, Fernandez and Harrowell [27] suggest that
for different compositions, the Kob-Andersen mixture may have an underlying
crystal formed of 11A bicapped square antiprisms. Closely related structures
have been found by energy minimisation of the KA system [59]. Changing
composition may thus provide another way to probe geometric frustration. Al-
ternatively, simulations in curved space of a one-component glassformer, such
as Dzugutov’s model [24] may enable frustration to be investigated in 3d.

Changing composition to control frustration relates to work carried out
by Tanaka and coworkers [41,51] which emphasises the role of medium-ranged
crystalline order. However, unlike geometric frustration where the LFS are
amorphous structures which form in the liquid and do not tessellate over large
distances [Eq. 18.1], the medium-ranged crystalline order is distinct from the
liquid, at least in d = 3 [81]. A further comment to be made here concerns our
identification of 10B clusters in the hard sphere system we consider, which is at
odds with the local crystalline order found in hard spheres [41, 51]. At present
this discrepancy is being investigated.

Fragility and structure. — A considerable body of work suggests a link
between fragility and the tendency of glassformers to develop local structure.
Strong and network liquids, such as silica, tend not to show large changes in
local structure upon cooling [19], although edge-sharing tetrahedra have been
associated with fragility [90]. In 2d, significant correlation between fragility
and tendency to locally order is found [42, 75]. Recently, the development of
multitime correlations has identified new timescales of dynamic heterogeniety.
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In fragile systems (in particular the Wahnström mixture), this becomes much
longer than τα at deep supercoolings [43].

In 3d similar behaviour is found in metallic glassformers [57,58], where in
addition, glass-forming ability is associated with strong behaviour. However in
model systems, such as hard spheres, in 3d at best only a very weak correla-
tion between glass-forming ability (polydispersity) and fragility is found [92].
Moreover, systems with almost identical two-body structure can exhibit differ-
ent fragilities [7], although higher-order structure (in the form of 11A bicapped
square antiprisms) is correlated with fragility [17]. Conversely, we have shown
that, in systems with effectively identical fragility, the change in structure upon
cooling need not be same [53]. In higher dimension, structure becomes less im-
portant, but fragile behaviour persists [13]. Finally, some kinetically constrained
models, which are thermodynamically equivalent to ideal gases by construction,
exhibit fragile behaviour [66].

These observations, make it clear that the development of local structural
motifs upon supercooling is not always connected with fragility. These caveats
aside, the data presented here in Fig. 18.6 for the three systems we have studied
do suggest that more fragile systems show a stronger change in local structure
upon supercooling. In particular, the Kob-Andersen model, which is the least
fragile of the mixtures we consider, shows a continuous rise in bicapped square
antiprisms across a wide range of temperatures. This is in marked contrast to
the Wahnstrom mixture and hard spheres, which show a much sharper rise in
LFS. We note that similar behaviour has been observed previously for the two
Lennard-Jones mixtures [18].

Outlook. — Our work paints a picture of decoupling between structural
and dynamic lengthscales in the simulation-accessible regime, which covers the
first five decades of increase in structural relaxation time τα. By comparison, as
shown in Fig. 18.2, the molecular glass transition at Tg corresponds to some 15
decades of incerase in relaxation time. That the structural lengthscale decouples
so strongly from the dynamic lengthscale ξ4 suggests that larger regions than
those associated with the LFS are dynamically coupled. As noted above, similar
results have been obtained previously, using a variety of different measures [12,
13,22,36,47,54,55].

The picture that emerges is one of disparity between ξ4 and the major-
ity of structural lengths, as illustrated in Fig. 18.8. This leaves at least three
possbilities:

1. Dynamic and structural lengths decouple as the glass transition is ap-
proached. And thus although structural changes are observed in many
fragile glassformers, they are not a mechanism of arrest.

2. ξ4 is not representative of dynamic lengthscales, or its increase as a func-
tion of supercooling is not sustained.

3. The majority of data so far considered is in the range T > TMCT and thus
is not supercooled enough for RFOT or Adam-Gibbs-type cooperatively
re-arranging regions dominate.
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Figure 18.8: Schematic of the possible behaviour of dynamic (ξdyn) and static
(ξstat) lengthscales as the glass transition is approached. Particle-resolved stud-
ies data from colloid experiment and computer simulation is available for
T & TMCT (solid lines). Dashed lines represent a possible scenario at lower
temperatures, extrapolated from recent simulations [47]. Green dot is dynamic
length ξ3 deduced from molecular experiments close to Tg [6]. Purple dashed
line represents coincidence of structural and dynamic lengths of cooperatively
re-arranging regions envisioned by RFOT and Adam-Gibbs theory.

We believe that a combination of all three, weighted differently depending
on the model, is the most likely outcome. Some evidence for the first scenario is
given by the fact the kinetically constrained models [66], and hyperspheres in
high dimension [13] undergo arrest. If one accepts either of these (admittedly
abstract) models, structure cannot be a universal mechanism for dynamical
arrest.

Further evidence in support of scenario one is provided by Cammarota
and Biroli [11] that pinning can drive ideal glass transition of the type envi-
sioned by RFOT and Adam-Gibbs theory, namely that configurational entropy
vanishes. Under the pinning field, no change in structure occurs (subject to
certain constraints) as a function of pinned particles, but a bona-fide glass
transition as decribed by RFOT does [11]. One possibility is to note that, as
temperature drops, a lower concentration of pinned particles is required for this
pinning glass transition and that the transition is somehow driven by a combi-
nation of structure and pinning. Moreover, the separations between the pinned
particles in the simulation accessible regime can approach one or two particle
diameters [46], suggesting rather small cooperatively re-arranging regions.

However the comparatively rapid increase in ξ4 is not without question.
Firstly, as indicated in Fig. 18.8 ξ4 seems to increase rapidly in the regime
accessible to particle-resolved studies in the regime T & TMCT. Indeed, a free
fit to measurements of ξ4 for our data using the Kob-Andersen model yielded
divergence close to the Mode-Coupling temperature [55]. We find the “critical
exponent” is ν = 0.588± 0.02, the “critical temperature” is TC = 0.471± 0.002
and the prefactor is ξ04 = 0.59± 0.02. Under the caveat that obtaining ξ4 from
fitting S4 in limited size simulations is notoriously problematic [28,29] and thus
any numerical values should be treated with caution, we observe that the value
of TC is not hugely different to the glass transition temperature found by fitting
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Mode-Coupling theory to this system, around 0.435 [44,45]. We also note that
ν = 0.588 lies between mean field (ν = 0.5) and 3D Ising (ν = 0.63) criticality.
Moreover among early papers involving ξ4, Lacević et al. showed divergance
of this dynamic length around TMCT. Furthermore, a recent paper by Kob
et al. [47] indicates non-monotonic behaviour of a dynamic correlation length
based on pinning with a maximum around TMCT as indicated in Fig. 18.8.
These results are not without controversy [30,48], but it has since been shown
that, just below TMCT, at the limit of the regime accessible to simulations, ξ4
can tend to saturate [60] and at least exhibits a different scaling [32].

Additional evidence that the dynamic correlation might not diverge as
fast as data from the T > TMCT range might indicate is given by experiments
on molecular glassformers close to Tg, some 8-10 decades increase in relaxation
time compared to the particle-resolved studies. This approach measures a lower
bound for the dynamic correlation length [6]. The lengths obtained by this
approach correspond to a few molecular diameters [6, 10, 20]. Such a small
dynamic correlation length (albeit a lower bound) certainly necessitates at the
very least a slowdown in the rate of increase of ξdyn followed by a levelling off.
Finally, we emphaise that ξ4 may not be the only means to define a dynamic
length [35,47].

It is tempting to imagine that in the TMCT > T > Tg range (or even
in the regime below Tg), structural and dynamic lengths might scale together,
corresponding to well-defined cooperatively re-arranging regions (Fig. 18.8).
The discussion of geometric frustration, and in particular Eq. 18.1 suggest
that an increase in structural lengthscale might necessitate either a decrease in
frustration, or “surface tension” or the thermodynamic driving force to form
locally favoured structures. Calculating any of these quantities, given the short
lengthscales and complex geometries involved appears a formidable task, but
which might provide a framework for increasing structural lengthscales at deep
supercooling.

For now, however, the jury is well and truly out as to the nature of a
structural mechanism for dynamic arrest. Locally favoured structures can be
identified and form networks which might at deeper supercooling (T < TMCT)
lead to the emergence of solidity in glassforming liquids. Hints in this direction
are evidenced from the growth in LFS with supercooling, that particles in
LFS are slower than average and that they retard the motion of neighbouring
particles [54,55]. However the discrepancy observed by some between structural
and dynamic lengthscales in the T & TMCT range is indicative that more is at
play than structure at least in the first few decades of dynamic slowing which
are described by mode-coupling theory.

18.6 Conclusions

In three model glassformers, we have identified the locally favoured structure
with the dynamic topological cluster classification. Each system exhibits a
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distinct LFS, which lasts longer than all other structures considered: the 11A
bicapped square antiprism in the case of the Kob-Andersen model, the 13A
icosahedron for the Wahnström mixture and the 10B cluster for hard spheres.
In all these systems, the LFS form a percolating network upon supercooling
in the simulation accessible regime. In this accessible regime, the formation of
this network does not correlate with dynamic arrest: all our systems continue to
relax after a percolating network of LFS has formed. The network formation is
qualitatively similar in all systems, although the less fragile Kob-Andersen mix-
ture exhbits a less dramatic rise in LFS population than either the Wahnström
mixture or hard spheres. We investigate structural and dynamic lengthscales.
In all cases the dynamic length ξ4 increases much faster than the structural
length in the dynamic regime accessible to our simulations. The lack of growth
of the structural correlation length appears compatible with strong geometric
frustration.
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