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Recently, numerical evidence for a dynamical first-order phase transition in trajectory space [L. O.

Hedges et al., Science 323, 1309 (2009)] has been found. In a model glass former in which clusters of 11

particles form upon cooling, we find that the transition has both dynamical and structural character. It

occurs between an active phase with a high fraction of mobile and low fraction of cluster particles, and an

inactive phase with few mobile but many cluster particles. The transition can be driven both dynamically

and structurally with a chemical potential, showing that local order forms a mechanism for dynamical

arrest.

DOI: 10.1103/PhysRevLett.109.195703 PACS numbers: 64.70.Q�

Introduction.—Understanding the glass transition is a
long-standing challenge of condensed matter physics [1].
In particular, describing the transition from liquid to solid
(from a dynamical perspective) without significant change
in structure has eluded a convincing theoretical descrip-
tion. Until recently, it was believed that there was very little
change in structure upon quenching a liquid into a glass.
This was based upon evidence from both experiment and
simulation [1]. However, such evidence focused on pair
correlations.

As far back as 1952, Frank argued that higher-order
structural motifs might become prevalent in glass-forming
liquids upon quenching [2]. These predictions have now
been realized, with higher-order motifs found in a variety
of glass-forming liquids [3–11]. While it has thus emerged
that deeply supercooled liquids and glasses certainly
exhibit ordering and are far from being structurally indis-
tinguishable from liquids, only in a few cases has a causal
link between structure and arrest been made [4,5,8,9].
Moreover, the opposite has also been claimed [12]. It
would thus be most attractive to settle the conundrum
about structure and the glass transition. In this Letter, we
take a step in this direction and use a structural mechanism
to drive a first-order phase transition in trajectory space.
In particular, we change the chemical potential of the
structural motif associated with slow dynamics in a model
glass former.

Dynamical phase transitions have been found analyti-
cally and numerically in kinetically constrained lattice
models [13–15]. Hedges et al. showed that a similar first-
order transition exists in an atomistic model glass former
[16]. In all of these models, the distributions of suitable
order parameters manifesting dynamic heterogeneities
show that low mobility, or activity, is more probable than

what would be expected from a Gaussian distribution.
These low activity tails can be enhanced through a biasing
field s, which couples linearly to the order parameter
much in analogy to conventional thermodynamics, where,
e.g., an external field couples to the magnetization. The
transition then occurs between the normal liquid, or active
phase, and an inactive phase comprised of trajectories in
which particles maintain a high overlap with their initial
positions.
It has been shown very recently that the inactive states

formed in this s ensemble have lower potential energies,
and exhibit very slow dynamics even when run without
biasing (s ¼ 0) before ‘‘melting’’ back into the liquid state
[17,18]. Given the interest in structure and the glass tran-
sition, it seems tempting to look for structural motifs in the
inactive states formed in the s ensemble. While we begin
with such an analysis, we go further: in addition to biasing
with the dynamical quantity s, we bias with �, the dynami-
cal chemical potential of the bicapped square antiprism
clusters that we refer to as 11A [19]. The population of
these clusters is known to increase on cooling in the Kob-
Andersen glass former that we simulate [3]; see Fig. 1(b).
Remarkably, we find that both s and our structural parameter
� drive the same dynamical phase transition.
Model.—We study the popular Kob-Andersen (KA)

binary mixture, which is composed of large (A) particles
and small (B) particles interacting through Lennard-Jones
potentials [21] (see the Supplemental Material [22]).
Throughout the Letter, we employ reduced Lennard-Jones
units with respect to the large particles. An analysis
of the system is presented in Fig. 1 for a total number
of N ¼ 10976 particles at number density N=V ¼ 1:2.
We determine the structural relaxation time �� from
the decay of the intermediate scattering function
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FAðtÞ ¼ P
kheiq�½rkðtÞ�rkð0Þ�i0=NA through FAð��Þ ¼ 1=e at

wave vector jqj ’ 7:21 corresponding to the first peak of
the structure factor. The brackets h. . .i denote an average,
whereas the subscript 0 emphasizes that no biasing field is
applied. The structural relaxation time is plotted in
Fig. 1(a) as a function of temperature together with two
functional forms that fit our relaxation data similarly
well: (i) The Vogel-Fulcher-Tammann expression �� /
expfA=ðT � TVFTÞg yielding TVFT ’ 0:325 [23,24], and
(ii) the parabolic Elmatad-Chandler-Garrahan fit �� /
expfðJ=T0Þ2ðT0=T � 1Þ2g holding below the onset tem-
perature T0 ’ 0:87 [25] (A and J are additional fit parame-
ters). While T0 marks the onset of dynamical heterogeneity
and is a material property, TVFT � T0 is often associated
with an ideal glass transition temperature [1], but depends
on the range of data fitted [26].

In Fig. 1(b), the population of particles in 11A clusters,
hni0, is shown as a function of temperature. Clusters are
detected from the real positions frkg using the topological
cluster classification (TCC), where a Voronoi construction
is used to detect the neighbor network [9]. Note that the
actual clusters can overlap so that one particle can be a
member of more than one cluster. No distinction between
A and B particles is made in the cluster detection. There is a
clear increase in the population of 11A as the system is
cooled. We fit the 11A population with an empirical power
law hni0 ¼ 0:029T�2:3 [solid line in Fig. 1(b)]. Of course,
such a dependence cannot describe the whole range since
the population cannot exceed unity. Thus, 11A can be
argued to be coupled to the increasingly slow dynamics
in the supercooled KA liquid. This finding is consistent
with that of Coslovich and Pastore [3]. By comparison, the
populations of other clusters (including a cluster similar in

size to 11A) show a much weaker temperature dependency
and are not associated with the slow dynamics (see the
Supplemental Material [22]).
Biased simulations.—In the following, we employ the

techniques described in more detail in Ref. [18] and, there-
fore, here we only give a brief overview. In particular,
throughout the remainder of this Letter, we study a small
system with N ¼ 216 particles at a modestly supercooled
state point with density N=V ¼ 1:2 and temperature
T ¼ 0:6. We use NVT molecular dynamics simulations
to harvest trajectories of length tobs ¼ K�t, where K þ 1
configurations are stored at regular times ti ¼ i�t.
We analyze trajectories on the fly and calculate two

order parameters along each trajectory. First, we obtain
the total number C ¼ P

ikh
m
k ðtiÞ of mobile particles. Here,

hmk ðtÞ ¼ �ðjr̂kðtÞ � r̂kðt� �tÞj � aÞ is 1 if particle k has

moved further than a ¼ 0:3 with respect to its inherent
state position r̂k (as obtained from a steepest descent
quench), and 0 otherwise. We employ inherent state posi-
tions to filter vibrations and focus on long-lived particle
displacement, whereby the commitment time �t ¼ 1:5 is
chosen in order to allow particles to commit to a new
position [27]. Second, from the real positions frkg we
determine the total number of particles N ¼ P

ikh
11A
k ðtiÞ

bound in 11A clusters, where h11Ak is 1 if particle k is part of
a cluster and 0 otherwise.
Our central quantities of interest are the fraction

of mobile particles c ¼ C=ðNKÞ and the fraction of parti-
cles identified within 11A clusters n ¼ N =½NðK þ 1Þ�.
Sampling of the tails of the distributions pðcÞ and pðnÞ
requires us to employ importance sampling combining
replica exchange with moves borrowed from transition
path sampling [28]. This allows us to reweight trajectories
and to analyze our data in terms of dynamical ensembles in
which an external field couples to an order parameter. In
particular, for an observable O we define two ensembles

hOis ¼ hOe�sCi0
he�sCi0

; hOi� ¼ hOe�N i0
he�N i0

; (1)

with biasing fields s and �, respectively. Hence, positive
biasing fields enhance the weight of trajectories that
have fewer mobile or more cluster particles, respectively.
Treating cluster particles as a species, and for�t large such
that configurations sampled at times ti are independent, the
field � becomes the chemical potential for the 11A parti-
cles. Of course, here it denotes the dynamical analog since
configurations are correlated along trajectories.
For each set of parameters, we have harvested 3�

10000 trajectories after the system has relaxed. Errors are
estimated as the standard deviation calculated from split-
ting the data into three sets of 10000 trajectories. In order
to calculate distributions and averages we employ the
multistate Bennett acceptance ratio method [29,30]. We do
not restrict the trajectories we accept in our importance

FIG. 1 (color online). (a) Structural relaxation time �� vs
inverse temperature 1=T. Open circles are numerical data. The
solid line is the Vogel-Fulcher-Tammann (VFT) fit, the dashed
line is the Elmatad-Chandler-Garrahan (ECG) fit holding for
T < T0. (b) Mean population hni0 of 11A clusters (see the
inset picture). The filled circle shows the largest population
( ’ 0:33) of 11A clusters we have reached in the simulations.
Using a power law extrapolation (line) implies a fictive tempera-
ture T ’ 0:35.
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sampling scheme, in particular, we might accept trajecto-
ries that have crystallized. However, we did not observe
such an event and all structural measures show that
the prepared inactive phase is amorphous (see the
Supplemental Material [22]). Moreover, 11A clusters
are not part of the KA ground state [31] and we expect
that their formation rather competes with than promotes
crystallization [3].

Results.—Given the structural response of the KA mix-
ture to cooling, it is natural to enquire as to its relation with
the first-order dynamical transition in trajectory space. In
Figs. 2(a)–2(c), we show the result for the s ensemble [18]
obtained from two runs with trajectory lengths K ¼ 100
and K ¼ 200, respectively. In Fig. 2(a), the probability
distribution of c is shown, which becomes nonconcave (it
acquires a shoulder) for trajectories of length K ¼ 200.
The external field s coupling to the order parameter tilts
this distribution until at s� ’ 0:0034 the fluctuations
hc2is � hci2s are maximized and lnpðcÞ � s�c exhibits a
bimodal shape, see Fig. 2(b), indicating a first-order

dynamical phase transition. The effect of varying the
biasing field s on mobility is shown in Fig. 2(c), exhibiting
a transition from an active phase to an inactive phase.
Simultaneously, we show the effect on the structure.
We see that 11A cluster populations are inversely corre-
lated with the active and inactive phases. In other words,
the glassy inactive states have a higher 11A population.
Moreover, comparison with other clusters show less
change across the transition (see the Supplemental
Material [22]).
Having demonstrated that the inactive and active phases

are structurally distinct, we enquire whether structure itself
in the form of 11A clusters can be used as an order
parameter to drive such a dynamical transition. As shown
in Figs. 2(d)–2(f) this is indeed the case. The distribution
pðnÞ [Fig. 2(d)] acquires a nonconcave shape already for
K ¼ 100. In Fig. 2(e), we plot the reweighted distributions
at�� maximizing the fluctuations hn2i� � hni2�. The effect
of varying � shown in Fig. 2(f) is similar to s; i.e., there is
a sudden drop of the fraction of mobile particles c accom-
panied by an increase of n. However, the effect on the
11A cluster population is rather stronger, leading to a
cluster-rich phase with hni� exceeding >0:3 in contrast

to hnis ’ 0:14 for the inactive phase. We have thus shown
that both stuctural and dynamical biasing fields lead to
similar dynamical phase transitions. As we shall see below,
both properties are actually manifestations of the same
transition.
To study the global structure and dynamics, we have

harvested trajectories with K ¼ 100 in the unbiased
ensemble (� ¼ 0) and at constant external field � ¼
0:014>�� ’ 0:0056 deep in the cluster-rich phase. The
population of 11A clusters is hni0:014 ’ 0:33, a value that,
following the power law fit, corresponds to a ‘‘fictive’’
temperature T ’ 0:35 [see Fig. 1(b)] close to the VFT
temperature. Similar to the s ensemble [16,18], the pair
distribution function for the large (A) particles is virtually
indistinguishable between unbiased and biased ensemble.
However, changes are observed for the small (B) particles
in Fig. 3(b), indicating an excess of B-B bonds sharing 3
common A neighbors [32]. To show that the cluster-rich
phase not only has a small number of mobile particles but
also relaxes much slower, we show in Fig. 3(c) the inter-
mediate scattering function FAðtÞ, where the sum runs over
all A particles. It is evident that particles in the cluster-rich
phase maintain a high overlap with their initial positions,
preventing the system from relaxing.
To complete our analysis, we study the melting of the �

ensemble. To this end, we take cluster-rich configurations
from the center of trajectories sampled at � ¼ 0:014 and
run them evolving under the unbiased dynamics. We aver-
age over 500 runs for each of these configurations. The
curve shown in Fig. 3(d) is the result after averaging over
31 uncorrelated cluster-rich configurations. With a relaxa-
tion time of �� ’ 545, these configurations relax markedly

FIG. 2 (color online). Left column: s ensemble (a) Probability
distributions pðcÞ for the density of mobile particles c for two
trajectory lengths. The nonconcave shape indicates a phase
transition in trajectory space as becomes obvious from the
bimodal distribution (b) at the field s� that maximizes the
fluctuations hc2is � hci2s . (c) Average fractions of mobile parti-
cles (solid lines) and 11A cluster population (dashed lines) vs the
biasing field s. Right column: (d)–(f) as left column but for the�
ensemble. Throughout, bright (red) and dark (blue) lines refer to
K ¼ 100 and K ¼ 200, respectively, with an additional data set
K ¼ 20 in (d).
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slower than an equilibrium system at the lower temperature
T ¼ 0:5, but are comparable to initial configurations taken
from the s ensemble [17]. Single runs show an ‘‘interface’’
in space-time; i.e., the intermediate scattering function
drops abruptly from ’ 0:8 to zero at some waiting time.
For all runs, we determine this waiting time from fitting
FAðtÞ with a tanh function. Figure 3(e) finally shows the
temporal evolution of mean mobile and cluster particle
populations, where single runs are shifted such that t ¼ 0
corresponds to the waiting time. Clearly, at the time the
intermediate scattering function decays the number of
mobile particles suddenly rises while the 11A population
drops.

We have demonstrated that the dynamical properties
of the cluster-rich phase are very similar to the inactive
phase. Indeed, combining the numerical data from both
order parameters to obtain the two-dimensional joint
probability pðn; cÞ shown in Fig. 4 we discern only two
basins implying that inactive and cluster-rich phase coin-
cide. Consequently, the dynamical transition is the same
whether it is driven through s or �, which is the central
result of this Letter. The active phase is found at large c
and small n; the inactive phase is found at small c and
large n. The actual reaction coordinate determining the
height of the barrier at coexistence the system has to cross
is a combination of, at least, c and n. Note that both pðcÞ

and pðnÞ are projections (i.e., marginal distributions) of
this joint distribution.
Even though there is only a single basin for the inactive

phase in Fig. 4(b), it is considerably broader (along the n
axis) than the active phase allowing for larger fluctuations.
This might indicate that the formation of 11A clusters,
while able to control dynamics, is not the only mechanism
of slow glassy dynamics. Whereas, the probability sharply
drops as c approaches zero, the cluster population can vary
greatly in the two ensembles since going to larger n the
decay of the probability pðnÞ is more gradual with a long
tail. Hence, even after reaching the inactive phase, we can
force the system to organize more and more particles into
11A clusters, but it cannot become any ‘‘slower’’ (in the
sense that the intermediate scattering function does not
decay in the inactive phase on the simulation time scale).
Conclusions.—In summary, we have performed a struc-

tural analysis of active and inactive trajectories sampled
by biasing with the density of mobile particles [18]. Our
analysis has revealed that the glassy states have a higher
population of bicapped square antiprism (11A) clusters
compared to the liquid. Coupling the trajectories to a
structural biasing field � based on the 11A population
results in the same first-order transition in structure and
mobility as when biasing with the mobility field s [16,18].
In other words, the first-order phase transition in trajectory
space has both structural and dynamic characteristics. That
this transition can also be driven by the chemical potential
of 11A cluster particles gives strong evidence that, at least
in this system, which is accepted to be representative of a
wide range of glass formers, structure forms a mechanism
for dynamical arrest.

FIG. 3 (color online). Radial distribution functions for
(a) the large A particles and (b) the small B particles for both
the unbiased ensemble (� ¼ 0, solid line) and in the inactive
phase (� ¼ 0:014>��, dashed line). (c) The intermediate
scattering function (ISF) for the A particles. (d) Slow decay of
the ISF for the melting runs (black line). Also shown are the ISFs
for equilibrated systems at T ¼ 0:6 and the lower temperature
T ¼ 0:5. (e) Time evolution of mobile (solid line) and cluster
particle (dashed line) populations, where t ¼ 0 corresponds to
the interface.

FIG. 4 (color online). Logarithm of the joint probability
pðn; cÞ shown for (a) the unbiased ensemble and at coexistence
in (b) the dynamical s ensemble (s ¼ s�) and (c) the structural �
ensemble (� ¼ ��) for trajectory length K ¼ 200 (all plots
show the same data reweighted differently). The phase diagram
in the s-� plane is sketched in the upper corner.
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Is the inactive phase related to state points at lower
temperatures? The fact that the same cluster type 11A
shows an increase of its population both when cooling the
system and when biasing with dynamics seems to supports
this idea. Although the system cannot become measurable
slower on the simulation time scale, it is tempting to suppose
that, if hni0 is an order parameter for how glassy the system
is, a much higher hni� in the � ensemble corresponds to a

remarkably supercooled state. The fact that the transition
is absent for short trajectories [cf. Fig. 2(d)] indicates that
dynamical correlations are at play. However, we cannot
exclude the possibility that this is a finite size effect
and that very large systems display a conventional order-
disorder transition with the population of 11A clusters serv-
ing as an order parameter. Biasing with a predefined local
motif can be understood as constraining the relative posi-
tions of particles. Although this is a much weaker condition
compared to pinning a subset of particles, a connection with
the random pinning glass transition [33] is conceivable.

Since 11A clusters allow the system to reduce its poten-
tial energy, one would indeed expect that their formation is
promoted at low temperatures. However, we have shown
that even at modestly supercooled conditions and constant
temperature, these clusters are rather easily induced and are
able to dramatically influence the dynamic properties of the
liquid. The controlling of amorphous short-range order thus
opens a route towards ‘‘high temperature glasses’’ that are
prepared by means other then a temperature quench.
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