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Abstract

I investigate the optical properties of guanine cytoplasm bi-layer stacks common in �sh skins, with the goal of

understanding how the structure of the stacks is important in producing a silvery re�ectance. A simple model for

the optics of a guanine cytoplasm multilayer stack is used to predict the re�ectivity across visible wavelengths of

light. A method, termed �f-value� deviates measure, is devised to quantify the similarity of the re�ectivity spectrum

to a perfect silver mirror re�ectivity spectrum. A MATLAB optimization routine is used to identify local solutions

of stack layer thicknesses which minimize the f-value measure. I �nd that the larger the number of layers in the

stack the easier it is to devise a guanine cytoplasm bi-layer stack with a spectrum similar to silver mirror uniform

re�ectance. I note that stacks with constant layer thicknesses, such as equal layer and quarter-wave stacks, are

poor uniform re�ectors compared to chirped and random layer thickness stacks and conclude that variation in layer

thicknesses is important for silvery re�ectance.
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1 Introduction

Structural colours arise from the wavelength dependent refraction and re�exion of light passing through an optical
structure. The highly re�ective structures found in �sh skin consist of alternating layers of high and low refractive
index materials (guanine and cytoplasm) with thicknesses of same order of magnitude as the wavelengths of visible
light. Camou�age as a survival strategy is highly developed in �sh and is most commonly achieved by using
multilayer stacks to give a colourful or silvery re�ectance. Silver is commonly used to disguise the pro�le of the
�sh against the silvery surface of the water when viewed from beneath. This mechanism is of particular interest
to engineers trying to manufacture perfect mirrors. An example of a multilayer stack from a ribbon�sh is shown
in �gure 1.

Figure 1: A transmission electron micrograph of the cross section of the skin of a ribbon�sh showing bands of
guanine crystals (light material) suspended in cytoplasm (dark material). Picture from McKenzie et al. [1995].

The origins of silvery colour in �sh skins is mainly structural, not relying on pigments, dyes, or metallic
elements. Usually there is a stack of parallel sided transparent layers with alternating refractive indices. The
most common materials for the layers are guanine and cytoplasm. The former has a higher refractive index
than the latter so the boundaries between the layers cause refraction and re�ection of light. Re�ected light from
di�erent layers interferes and colour is observed for wavelengths where the interference is constructive. Often the
colour changes with the angle of incidence of the light because this changes the optical path lengths of the layers.
The derivation of the model for the stacks is given in �2.1.

It is known that for a given number of layers and type of optical materials the highest re�ectance is obtained
when the optical thickness of the layers is a quarter-wavelength of light. However these quarter-wave stacks have
narrow band re�ectance spectra and are only suitable for coloured �sh (Lythgoe et al. [1984]) and do not easily
explain the silvery re�ectance spectra common in �sh.

I suggest a function, termed f-value, to measure the likeness of two re�ectance spectra (�2.3). Speci�cally it
is used to measure how close a model predicted spectrum of a multilayer stack is to the uniform 1 re�ectance
spectra of a silver mirror. With this ability, I attempt to �nd solutions of stack layer thicknesses with broad band
re�ectance spectra by using a MATLAB optimization algorithm to minimize this f-value (�2.4). The algorithm is
initialized with a range of stack structures, including quarter-wave stacks, random stacks and equal layer stacks.
The goal of this is to learn what factors are important in the layer structure for a broad band re�ectance spectrum.

The theory of structural colour in multilayers has been studied since Huxley [1968] �rst derived a formula for
the re�ectance of a bi-component stack. Denton and Land [1971] noted the mechanism was used in �sh to produce
highly re�ecting structures and suggested that �sh were using quarter-wavelength layer thicknesses of guanine
to produce the highest re�ectivity. This solution was thought to be universal across all species until Lythgoe
et al. [1984] suggested that quarter-wave stacks whilst adequate for coloured �sh were not suitable for explaining
the silvery re�ectance seen in a wide variety of species. The idea of random stacks using optical localization to
produce high re�ectance was discussed by Yoo and Alfano [1989] and Martijn de Sterke and McPhedran [1993],
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and McKenzie et al. [1995] wrote a paper claiming silvery �sh skins could be explained entirely as random stacks,
or chaotic re�ectors.

2 Methods

2.1 The Optics of a Multilayer Stack
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Figure 2: Diagrammatic illustration of the multilayer stack.

I model the guanine cytoplasm multilayer stacks in �sh skin as strati�ed medium. This is a medium whose
optical properties are constant throughout the planes perpendicular to a �xed direction. We consider a multilayer
of N homogeneous dielectric �lms, denoted with index i = 1, 2, .., N , and strati�ed in the z-axis of a Cartesian
coordinate system. The multilayer is bounded on each side by semi-in�nite homogeneous media denoted by indices
F and L respectively. All media are non-magnetic, or µi ≡ 1, and have dielectric constant εi. Let nF and nL
be the refractive indices of the �rst and the last semi-in�nite media, and ni and hi be the refractive index and
thickness of layer i in the multilayer. I de�ne the coordinate system such that the stack extends from z = 0 to
z =

∑N
i=1 hi = zL.

Imagine a plane, time-harmonic electromagnetic wave propagating through the medium. I consider the special
case where the wave is linearly polarized with its magnetic vector perpendicular to the plane of incidence we speak
of a transverse electric wave (TE ); when it is linearly polarized with its magnetic vector perpendicular to the
plane of incidence we speak of a transverse magnetic wave (TM ) (any arbitrarily polarized wave may be resolved
into a TE and a TM wave). These two waves are mutually independent. The incident wave has wave-number k
and makes an angle θF to the z-axis. Wave-number k is constant throughout all media. The derivation of the
re�ectance of a multilayer stack follows the matrix method of Abelès [1950] given in Thin-�lm Optical Filters by
Macleod [1986]. Standard results are cross-referenced with equation numbers in Principles of Optics by Born and
Wolf [1999] where appropriate.

The angle the of the propagating wave in medium 1 is given by Snell's law1

1Born & Wolf �1.2 (10)+(13)
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sinθ1

sinθF
=
nF
n1
, (1)

i.e.

θ1 = sin−1(
nF
n1
sinθF ). (2)

The angle the transmitted wave makes to the z-axis in medium i by repeated application of Snell's law

θi = sin−1(
ni−1

ni
sinθi−1). (3)

The law of re�ection states that light re�ected at the boundaries of stack make the same angle to the (normal)
z-axis as the incident light.

Without loss of generality I choose the plane of incidence to be the y, z-plane. For TE wave, Ey = Ez = 0
and Maxwell's equations show Ex, Hy and Hz are functions of y and z only. It follows that

∂2Ex
∂y2

+
∂2Ex
∂z2

+ n2k2
0Ex =

d(lnµ)
dz

∂Ex
∂z

, (4)

and we try a solution of the form

Ex(y, z) = Y (y)U(z), (5)

i.e. (4) becomes

1
Y

d2Y

dy2
= − 1

U

d2U

dz2
− n2k2

0 +
d(lnµ)
dz

1
U

dU

dz
. (6)

By setting both sides of (6) to k2
0α

2, this solves as

Ex = U(z)eı(kαy−ωt). (7)

Maxwell's equations also give Hy and Hz by expressions of the same form

Hy = V (z)eı(kαy−ωt), (8)

Hz = W (z)eı(kαy−ωt). (9)

U , V , and W are known as the amplitude functions and are in general complex functions of z. U and W are
linearly dependent so in fact U and V are described by a pair of simultaneous �rst-order di�erential equations

dU

dz
= ıkµV, (10)

dV

dz
= ık(ε− α2

µ
)U, (11)

which reduce to two second-order linear di�erential equations

d2U

dz2
− d(lnµ)

dz

dU

dz
+ k2(n2 − α2)U = 0, (12)

d2V

dz2
−
d
[
ln(ε− α2

µ )
]

dz

dV

dz
+ k2(n2 − α2)V = 0. (13)

There is an analogous pair of ODEs for the TM wave.
Since functions U(z) and V (z) each satisfy a second-order linear di�erential equation it follows that each may

be expressed as a linear combination of two particular solutions U1, U2 and V1, V2. These are coupled as
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dU1
dz = ıkµV1,

dV1
dz = ık(ε− α2

µ )U1,
}

dU2
dz = ıkµV2,

dV2
dz = ık(ε− α2

µ )U2.
} (14)

From these relations it follows that

d

dz
(U1V2 − U2V1) = 0, (15)

and we choose convenient particular solutions

U1 = f(z), U2 = F (z),
V1 = g(z), V2 = G(z), } (16)

such that
f(0) = G(0) = 0, F (0) = g(0) = 1. (17)

Then the solutions with

U(0) = U0, V (0) = V0, (18)

may be expressed in the form

U = FU0 + fV0,
V = GU0 + gV0,

} (19)

or, in matrix notation,

Q = NQ0, (20)

where

Q =
[
U(z)
V (z)

]
, Q0 =

[
U0

V0

]
, N =

[
F (z) f(z)
G(z) g(z)

]
. (21)

It is normally the case that U0 and V0 are expressed as functions of U(z) and V (z),

Q0 = MQ, (22)

where |M| ≡ |N| ≡ 1 and

M = N−1 =
[

g(z) −f(z)
−G(z) F (z)

]
. (23)

M is the characteristic matrix of a strati�ed medium and it relates the x and y-components of the electric (or
magnetic) vectors in the z = 0 plane to the components in an arbitrary x, y−plane.

The characteristic matrix for a plane wave propagating through a homogeneous dielectric �lm is speci�ed in
Born & Wolf2. For the TE wave in layer i this is3

Mi(hi) =
[

cos(knihi cos θi) − ı
ni cos θi

sin(knihi cos θi)
−ıni cos θi sin(knihi cos θi) cos(knihi cos θi)

]
, (24)

The characteristic matrices for the TM wave are slightly di�erent, and are obtained by replacing the �rst ni in
the o� diagonal components of the matrices by 1

ni

4.

For our multilayer strati�ed media we obtain the characteristic matrix by5

2Born & Wolf �1.6.1 & �1.6.2
3Born & Wolf �1.6.2 (39)
4Born & Wolf �1.6.2 (40)
5Born & Wolf �1.6.2 (41)
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M(zL) = M1(h1)M2(h2)M3(h3)...MN−1(hN−1)MN(hN ) (25)

=
[
m11 m12

m21 m22

]
. (26)

Let AF , BF denote the amplitudes of the incoming and outgoing waves for the �rst semi-in�nite medium,
and AL, BL denote the amplitudes of the outgoing and incoming waves for the last semi-in�nite medium. It is
reasonable to assume BL = 0, as physically this means a �sh does not radiate light internally through its skin.
Using

H =
√
ε

µ
s×E, (27)

the following relations for a TE wave are derived

U0 = AF +BF , U(zL) = AL,
V0 = nF cos θF (AF −BF ), V (zL) = nL cos θLAL.

} (28)

Using (22) we see that

AF +BF = (m11 +m12nL cos θ0)AL,
nF cos θF (AF −BF ) = (m21 +m22nL cos θL)AL.

} (29)

Set AL = 1 and solve simultaneously for AF and BF . We obtain

AF =
1
2

(m11 +m12nL cos θL +
m21 +m22nL cos θL

nF cos θF
) (30)

BF =
1
2

(m11 +m12nL cos θL −
m21 +m22nL cos θL

nF cos θF
) (31)

The re�ectivity and the transmissivity are

RTE =
|BF |2

|AF |2
, (32)

T TE =
nL cos θL
nF cos θF

1
|AF |2

. (33)

To obtain the re�ectivity and transmissivity of the TM wave replace all the ni by
1
ni

in (30), (31), (32) and (33).
As the re�ected and transmitted plane polarized waves are time-harmonic sinusoidal, it is possible to take their

average to give the re�ectivity and transmissivity of incident unpolarized light. The average of a time-harmonic
sinusoidal function

ˆ a

−a
sin2(ωt+ δ)dt =

1
2
, (34)

which means the unpolarized re�ectivity and transmissivity are

R =
1
2

(RTE +RTM ), (35)

T =
1
2

(TTE + TTM ). (36)

It is possible to show that the power of the incident wave is equal to the sum of the power of the wave
transmitted through the stack and the power of the re�ected wave and the system conserves energy. The following
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relation, for a TE wave, provides a useful check that the implementation of the solution in MATLAB does indeed
obey the law of energy conservation

nF cos θF (|AF |2 − |BF |2)− nL cos θL = 0, (37)

or perhaps more simply,

RTE + TTE = 1. (38)

From here on I mainly refer to the re�ectivity of a multilayer stack, as it is trivial to infer the transmissivity from
this quantity.

2.2 MATLAB Implementation
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Figure 3: The TE -component re�ected from a multilayer stack as a function of wavelength and angle of incidence
of incident light for a four layer stack with random thicknesses and refractive indices.

The preceding section derives analytic formulae for the re�ectance and transmittance of a plane wave incident
on a multilayer stack with in�nite and parallel plane layers. The solution is only valid for isotropic and non-
magnetic media with both these assumptions valid for cytoplasm. It is, however, known that guanine is not
isotropic due to its crystal structure.

The re�ectivity and transmissivity are functions of the following variables:

1. N - the number of layers in the stack,

2. {ni}, nF , nL - the refractive indices of the layers, and the �rst and last semi-in�nite media (i ∈ 1, 2, . . . , N),

3. {hi} - the thicknesses of the layers (i ∈ 1, 2, . . . , N),

4. k (or λ) - the wave-number (or wavelength) of the incident plane wave,

5. θF - the angle of incidence of the incident plane wave,

6. and the polarization of the incident plane wave.

I use MATLAB to calculate the re�ectivity and transmissivity for both TE and TM wave as a function of these
parameters with code basicmodel.m (�B.1). Sample spectra for a four layer stack with random layer thicknesses
and refractive indices are shown in �g 3.

8



468 469 470 471 472 473
0.75

0.8

0.85

0.9

0.95

1

1.05

d

d

d

di-1

i

i+1

i+2

lambda (nm)

re
!

e
ct

iv
it

y

Stack Spectrum

Reference Spectrum

Figure 4: Diagram of square deviates from spectra

2.3 �f-value� Spectral Similarity Measure

A simple method is devised to quantity the similarity of a predicted spectrum to any reference spectrum. De�ne
a reference re�ectivity spectrum Rref = R(λ, θ) as a function of incident light with λ wavelength and θ angle. A
stack, de�ned by parameters N , {ni}, nF , nL and {hi} for i ∈ 1, 2, . . . , N , has calculated re�ectivity in the form
Rstack = R({λl}, {θj}) where wave-numbers are discrete points λl, l ∈ L as are angles of incidence θj , j ∈ J .
For a discrete point on the spectrum, the deviation with moment m is

dml,j = (Rref (λl, θj)−Rstack(λl, θj))m. (39)

Moments m ∈ {2, 4, 6, . . .}. The �f-value� with moment m is used to measure the deviation of the stack spectrum
from the reference spectrum

fm =

∑
l∈L, j∈J d

m
l,j

|L| |J |
. (40)

An important consequence to note is that fm ∈ [0, 1] always.
The f-value is always greater than zero and de�nes a surface in a (|L| + |J | + 1)-dimensional space. The

global minima of the surface is the optimal stack such that its spectrum is closest to the reference spectrum using
the deviation measure (39) de�ned. Example code which calculates the square f-value (moment 2) is given in
stacksquaredresiduals.m (B.2).

2.4 MATLAB Optimization Routine

I employ a numerical algorithm of the MATLAB optimization toolbox to search f-value space for local minima.
The local minima correspond to multilayer stacks parametrized to produce a spectrum as a best �t to the reference
spectrum. To model the re�ectance of �sh skin I consider the a multilayer stack of guanine crystals suspended in
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cytoplasm. This de�nes both nF = nL = 1.365, i.e. the �rst and last semi-in�nite media are cytoplasm, and

ni =

{
nG = 1.84 odd i

nC = 1.365 even i
.

For simplicity only the case of normal incidence light is considered and incident light of visible wavelengths (300nm
to 800nm or 400nm to 800nm depending on N). This means f-value moment m reduces to a function of the layer
thicknesses only, i.e. fm = fm({hi}). The number of layers and their thicknesses are the parameters which �sh
biology has control. The reference spectrum I use has maximum re�ectivity for all visible wavelengths

Rref = 1, ∀λi. (41)

This spectrum corresponds to a perfect silver mirror, or white if the surface is Lambedian, and is a good approx-
imation for the spectrum of silvery �sh skins.

The optimization algorithm used is fminunc.m unconstrained nonlinear minimization. The algorithm works to
minimized the instantaneous f-value of a stack by controlling the square root of the thicknesses of the �rst N − 1
layers, i.e. {

√
hi}. This enforces that all thicknesses are non-negative without having to use a slower constrained

optimization routine. I choose N even such that the last layer of the stack is cytoplasm, and its thickness of the
last layer hN is determined by a large parameter de�ning the maximum thickness of the multilayer stack. The
thickness of this last layer of cytoplasm does not a�ect the spectrum of the stack, as in e�ect it becomes part of
the last semi-in�nite cytoplasm layer. De�ning the routine this way allows me to ensure the total stack thickness
does not grow to an unphysical size during the optimization routine.

fminunc.m uses the BFGS Quasi-Newton method with a cubic line search procedure. It approximates the
Hessian of the f-value function and updates this approximation using the BFGS method. fminunc.m is an entirely
deterministic routine and it might only converge converge to local solutions (i.e. local minima of the f-value
surface) (Broyden [1970], Fletcher [1980]). All algorithm settings are default bar a increase in the 'maximum
number of function evalutions' (to 104 ∗ numberOfVariables), increase in the 'maximum number of iterations' (to
105) and a decrease in 'X tolerence' (to 10−5). These parameters are chosen to ensure convergence to solution and
on a feasible timescale (optimization runs lasting 5 days maximum). The optimization routine must be initialized
from a starting con�guration of a set of layer thicknesses which one can choose at will.
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3 Results

3.1 Minimization Algorithm Parameters

In the following results I always use a perfect silver mirror unity reference spectrum (equation 41). Spectra are
evaluated for N = 50 or 200 layers, where there are N

2 guanine and N
2 − 1 cytoplasm optically signi�cant layers.

The re�ectivity of the stack is calculated at 1nm intervals in wavelengths 400nm to 800nm for N = 50, and 300nm
to 800nm for N = 200. All other settings are as section �2.4.

The initial thicknesses of the layers of the stack are chosen in �ve ways:

1. randomly so the total thickness of the N − 1 are uniformly distributed in the range [0, hT ]. For 50 layer
random stacks hT = 100µm, and for 200 layer random stacks hT = 200µm (�3.2+�3.3),

2. 200 layer stacks with constant layer thickness (�3.4),

3. quarter-wave stack optimized for wavelength λ̄, i.e. hG = λ̄
4nG

, hC = λ̄
4nC

(200 layers in �3.5 and 50 layers
in �A.2),

4. 200 layer stacks with guanine layer thicknesses optimized for wavelength λ̄ (hG = λ̄
4nG

) and cytoplasm layer
thicknesses chosen randomly in [0, 1] (�3.7),

5. as chirped stacks with systematically changing thicknesses, e.g. increasing linearly from 0.1nm to 2nm
(�3.6).

3.2 Random Stacks Optimizing Square Deviates

Number of Layers, N 50 200
Number of Stacks Sampled 105 103

Input Output Input Output

Mean Stack Thickness, ¯hin/outT (µm) 48.67 48.92 114.50 114.56

Mean f-value,
¯

f
in/out
2 0.268 0.109 0.0363 0.00767

Standard Deviation of f-value, σ
f

in/out
2

0.0598 0.0367 0.00589 0.0115

Lowest f-value, min{f in/out2 } 0.204 0.00853 0.0216 0.0000110
Sample Mean Re�ectivity 0.561 0.718 0.913 0.967

Sample Mean S.D. of Re�ectivity 0.275 0.171 0.167 0.0767

Table 1: Results for second moment random stack optimization runs.

For both the 50 and 200 layer cases I sample over 100 random random stacks with second moment optimization
runs and the results are listed in table 1. The �rst general result I note is that as the number of layers in the
stack increases the mean f-value, or total re�ectivity, of the stack increases. The optics of bi-layer stacks implies
this a result, and is con�rmed by the decrease in f-value of the stacks after optimization. The optimization
routine attempts to improve the silvery re�ectance (as measured by f-value) of a multilayer stack, but the results
demonstrate that a randomly generated 200 layer stack is likely to have lower f-value than an optimized 50 layer
random stack (200 layer ¯f in2 is lower than 50 layer ¯fout2 ). An obvious method for a �sh to increase its skin
re�ectivity is to increase the number of guanine-cytoplasm bi-layers in its skin.

11



300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lambda (nanometers)

re
fle

ct
iv

ity

Spectra of Run 103: 200 Layer Random Input Stack, Second Deviate Optimization

 

 

Before Optimization
After Optimization

Figure 5: Input and output stack spectra of optimization run 103. An input 200 layer stack with random layer
thicknesses has spectrum shown with the blue line before the optimization routine. On completion the output
stack has a spectrum shown in red. It is clear the red line is a closer match to a unity spectrum of a silver mirror.
f in2 = 0.0354, fout2 = 0.000489.

Figure 5 shows the spectra of a random 200 layer stack before and after optimization; the blue line is the
spectrum of the initial stack with random layer thicknesses and the red line is the spectrum of the stack produced
by the optimization routine. It is clear the output red spectrum is a better approximation to the unity silver
mirror spectrum than the input blue spectrum.. A simple method to measure the re�ectivity of a stack is to
consider a mean re�ectivity across the whole spectrum. This tells us the absolute proportion of the incident light
which is re�ected and is perhaps more intuitive than f-value, but drops the detail of the spectrum and hence the
colour of the returning light itself. For example run 103 of the 200 layer random stacks shown in �gure 5 has a
mean input stack re�ectivity of around 0.91 or 91%, whilst the output spectrum has mean re�ectivity of nearly
0.98 or 98%. There are also far fewer �low re�ectivity spikes�, characteristic of the blue spectrum, in the output
red spectrum; the standard deviation of the re�ectivity for the input stack is 17% compared with 1.5% for the
output stack. The spikes of low re�ectivity for particular wavelengths cause the re�ection to be more colourful
than silver. The fourth moment f-value optimization routine is designed to penalize these low re�ectivity spikes
in order to give a �atter spectrum and more silvery re�ection.

Figure 5 is typical of the 50 and 200 random layer second moment optimization runs. Over all the runs, the
mean re�ectivity at a given wavelength is given in the second to last row of table 1 and the mean standard deviation
of spectral re�ectivity of all runs in the last row of that table. For both the 50 and 200 layer optimization routines
the mean re�ectivity increases resulting in an improvement wavelength of around 15% and 5% respectively, and
the standard deviation decreases indicating the re�ectivities are less varied after optimization.

Discussing absolute re�ectivities becomes inappropriate when the desired re�ectivity spectrum is not unity
silver mirror. It is for this reason the more general f-value measure was suggested. The mean second moment
f-value of the 50 layer stacks decreases by a factor greater than 2 on optimization, and likewise the f-value of the
200 layer random stacks decreases by a factor of almost 5 when optimized. This is reassuring in that it shows the
optimization routine does indeed improve the silvery re�ectance of a stack according to the measure I suggest.
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Figure 6: A diagram of 200 layer stack run 103 before and after the second moment optimization routine. The
yellow layers are guanine and the black corresponds to cytoplasm, with the last black region at the right of the
�gure being the semi-in�nite cytoplasm. Both before and after �gures are to the same scale. f in2 = 0.0354, fout2 =
0.000489.

The stacks with lowest f-value match the silver mirror spectrum closely and are considered as �best performing�.
Both sample mean f-values and sample minimum f-values are listed in table 1. There is a general trend in the
results showing that the stacks with smaller mean layer thickness have lower f-values.

Drawing the multilayer stack to scale enables one to examine how the thickness of the layers de�ne the stack
structure. Figure 6 shows a to-scale render of a 200 layer stack before and after optimization (run 103 of �gure
5). The yellow regions represent guanine layers and the black areas represent cytoplasm. Firstly it is clear that
the total thickness of the stack has not changed appreciably with the optimization, and this is the case for all
the random stack optimization runs (both for 50 and 200 layer stacks). Table 1 gives the mean input and output
thicknesses of the stacks, and these quantities only di�er by slight amounts. This phenomena highlights a serious
limitation of the optimization routine: it will in all probability fail to �nd the mathematical solution of the best
silvery re�ective stack if does not explore the space of stack thicknesses.

The way the optimization routine is de�ned means the total stack thickness is a free variable, and in some of
the later sections (such as quarter-wave stacks) the routine does change the total stack thicknesses appreciably.
It is a curious result that the routine does not do so for the random initial stacks and the most likely explanation
for this failure is that the routine hones in on a local minima of the f-value surface and terminates there. More
investigation is needed into the parametrization and set up of the optimization routine to try and solve this
issue. In theory it is also possible to use other methods such as grid sampling and basin hopping to �nd the
global minimum(a) of the f-value surface and hence the optimal solution(s) and for more comment on this see the
extensions section (�5).

From the renders of �gure 6 it is also clear that the layer structure of the stack does not change markedly
after optimization. Both the input stack and the output stack have a very similar guanine-cytoplasm bi-layer
structure, with the renders bearing a strong resemblance to two similar bar-codes - layers are in roughly the same
position in both stacks and there is only a slight variation in layer thicknesses at a local level. Histograms of
the distribution of the guanine and cytoplasm layer thicknesses allow us to see more clearly any changes in layer
thicknesses on optimization. Figure 7 shows the distributions of a 200 layer stack, with only vary slightly before
and after optimization. The distributions of �gure 7 are typical of all the random stack optimizations (both 50
and 200 layers), with only a slight change in distribution being seen.

The fact that the optimization routine fails to appreciably change the total stack thickness and the distribution
of the layer thicknesses raises the following points. Firstly that the f-value landscape contains a large number
of local minima (I �nd one for each optimization run). The proportion of these minima that are accounted for
by symmetries is not clear. The optimization routine demonstrates that changing the distribution of the layer
thicknesses by only a slight amount can lead to a signi�cant improvement in the silver appearance of the stack.
In fact a quarter of 200 layer random stack optimizations lead to a factor 100 decrease in f-value, which is a
very signi�cant improvement. Although such radical decreases in f-value were not seen for the 50 layer random
stacks, nearly all optimizations halved the f-value of the stack or more. Therefore it appears that the re�ectivity
of a stack is highly sensitive to a small change in a layer thickness. It is also true that there are a large number
of almost degenerate solutions for a given number of layers, and to ensure a higher re�ectivity it is simplest to
increase the number of layers in the stack.
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(a) Input random thickness distribution of
guanine layers.
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(b) Distribution of guanine thicknesses after
optimization. There is only a slight change
when compared to the input distribution.

Figure 7: Histograms of thicknesses of 100 guanine layers before and after second moment optimization. In
general for the random stack optimizations, the thickness distributions only distort slightly after optimization -
for both guanine and cytoplasm layers. This is most likely a consequence of the routine terminating on a local
minima of the f-value surface. There is no general trend for the change of the distributions.

3.3 Random Stacks Optimizing Fourth Deviates

Number of Layers, N 50 200
Number of Random Input Stacks 104 110

Input Output Input Output

Mean Stack Thickness,
¯

h
in/out
T (µm) 55.08 55.24 108.02 108.03

Mean f-value,
¯

f
in/out
4 0.153 0.0357 0.0164 0.00453

Standard Deviation of f-value, σ
f

in/out
4

0.0656 0.0108 0.00421 0.00486

Lowest f-value, min{f in/out4 } 0.110 0.00337 0.00783 0.00000119
Sample Mean Re�ectivity 0.558 0.676 0.913 0.942

Sample Mean S.D. of Re�ectivity 0.277 0.178 0.168 0.111

Table 2: Results for random stack fourth deviate optimization runs.

The conclusions drawn from random stack second moment f-value optimizations (�3.2) generally apply to random
stack optimizations using a fourth moment f-value function. More precisely:

1. 50 layer output stacks are have lower f-values than 200 layer random input stacks, so in general the more
layers the better the silver re�ectance of the stack.

2. The spectral mean re�ectivity increases and the spectral standard deviation of re�ectivity decreases for all
sample runs.

3. The N = 200 layer optimizations see a greater decrease in fourth moment f-value than the 50 layer opti-
mizations in terms of factor of reduction, but not in terms of magnitude of reduction.

4. In general the thinner the layers of the stack, the lower the f-value.

5. Each optimization run terminates at a local minima of the fourth moment f-value landscape, with only a
fractional change in stack thickness and layer thickness distributions.

The premise behind the fourth moment f-value measure is that re�ectivities far from unity at a given wavelength
are penalized. The fourth moment f-value optimization should result in spectra with less outlying low re�ectivity
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points than the second moment optimized stacks, perhaps at the expense of overall mean re�ectivity. Although a
direct comparison is not strictly fair as the square and fourth optimization runs start with di�erent random stacks,
the square moment output spectra have average re�ectivity of 0.967 whereas the fourth moment output spectra
have a 0.942 re�ectivity (both �gures quoted for 200 layer stacks). Therefore the square deviate optimization
produces stacks with higher mean re�ectivities, as expected.

The square moment output stacks have slightly lower standard deviations of re�ectivity on average for the 200
layer stacks, and an insigni�cant di�erence for the 50 layer stacks. This indicates there is slightly less variation
in re�ectivities of the output spectra than the fourth moment output spectra. The lower standard deviation does
not necessarily imply fewer �low re�ectivity spikes� in the spectrum however. On plotting the spectra there is
no discernable di�erence in numbers of low re�ectivity outliers between the second and fourth moment output
stacks. Therefore it is di�cult to tell if the fourth moment optimization run is an improvement in this regard
without analyzing the statistics of the outliers further. Note it is not possible to quantitatively compare second
moment f2 and fourth moment f4 f-values directly as the units are di�erent.

3.4 Equal 200 Layer Stacks Optimizing Square Deviates

Input Layer Thickness, hin (µm) 0.5 1 1.5 2 3
Input Total Thickness, hinT (µm) 99.5 199 298.5 398 597

Input f-value, f in2 0.771 0.764 0.774 0.765 0.769
Output f-value, fout2 0.000169 0.000209 0.000327 0.0884 0.150

Output Total Thickness, houtT (µm) 82.43 170.98 279.22 431.90 606.51
Mean Output Layer Thickness, ¯hout (µm) 0.414 0.859 1.40 2.17 3.05

S.D. of Output Layer Thicknesses, σhout
i

(µm) 0.129 0.104 0.298 0.153 0.0373

Table 3: Results for second moment equal layer thickness 200 layer stack optimization runs.

In this section all the guanine and cytoplasm layers in the input stacks have constant thicknesses. The layer
thicknesses are given in the heading of table 3, there are 200 layers in total and the second moment optimization
routine is employed. All �ve equal-layer thickness stacks studied have a poor re�ectivity when compared to the
random stacks; their second moment f-values are above 0.75, whereas the highest f-value for a (input) random
200 layer stack f in2 is slightly less than 0.05 and the mean is 0.0363. Therefore the constant layer stacks are poor
silver mirror solutions.

Upon optimization there is a marked improvement in uniform re�ectivity for the stacks with initial layer
thickness less than 2µm, as the f-value decreases by a factor of at least 2000 to an output around 0.0002. This
makes them better uniform re�ectors than most of the optimized 200 layer random stacks, where ¯fout2 = 0.00767.
The thicker layer equal stacks do not perform as well after optimization, perhaps as layers greater than 2µm are
not optically e�ective.

In all the equal layer runs the thickness of the stack changes much more than the fractional changes witnessed
with the random stack optimizations, with some optimization seeing a 10% change in the total stack thickness.
The layer thickness distributions still only change slightly, with the output thicknesses clustered around the input
thickness with a standard deviation ∼ 0.1µm. Again it appears the optimization algorithm is terminating in a
local minima of the f-value surface.

The variation in output layer thicknesses is seen for the 0.5µm equal layer stack in �gure 8. A tentative
conclusion may be drawn that the single layer thickness stacks are not as good re�ectors as random layer stacks,
by virtue of the high f-values of the input stacks. More single layer thickness stacks would have to be sampled to
con�rm this however.
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Figure 8: To-scale diagram of the 0.5µm equal layer wave stack before and after optimization. Variability in the
layer thicknesses is introduced by the optimization routine to improve the f-value of the stack. Thickness are in
micrometers and colours as �gure 6. f in2 = 0.771, fout2 = 0.000169.

3.5 Quarter Wave, 200 Layer, Stacks Optimizing Square Deviates

Wavelength (nm) 300 350 400 450 500 550

Input Total Thickness, hin (µm) 9.52 11.10 12.69 14.27 15.86 17.45
Input Guanine, hinG (µm) 0.0408 0.0476 0.0543 0.0611 0.0679 0.0747

Input Cytoplasm, hinC (µm) 0.0549 0.0641 0.0733 0.0824 0.0916 0.101
Input f-value, f in2 0.848 0.748 0.708 0.674 0.647 0.625

Output f-value, fout2 0.000165 0.0948 0.0555 0.000372 0.0801 0.000159
Output Total Thickness, hout (µm) 51.33 394.48 70.05 18.67 518.93 57.35

Output Mean Guanine, ¯houtG (µm) 0.278 2.24 0.418 0.0894 2.93 0.291
Output S.D. Guanine, σhout

G
(µm) 0.374 3.28 0.658 0.120 3.45 0.444

Output Mean Cytoplasm, ¯houtC (µm) 0.238 1.72 0.285 0.0983 2.28 0.286
Output S.D. Cytoplasm, σhout

C
(µm) 0.296 2.264 0.505 0.129 2.52 0.399

Wavelength (nm) 600 650 700 750 800

Input Total Thickness, hin (µm) 19.03 20.62 22.20 23.79 25.38
Input Guanine, hinG (µm) 0.0815 0.0883 0.0951 0.102 0.109

Input Cytoplasm, hinC (µm) 0.110 0.119 0.128 0.137 0.146
Input f-value, f in2 0.609 0.597 0.612 0.677 0.759

Output f-value, fout2 0.101 0.00000339 0.102 0.0327 0.00000850
Output Total Thickness, hout (µm) 108.30 22.96 49.24 89.55 18.10

Output Mean Guanine, ¯houtG (µm) 0.555 0.108 0.236 0.455 0.0710
Output S.D. Guanine, σhout

G
(µm) 0.371 0.0655 0.0889 0.241 0.0255

Output Mean Cytoplasm, ¯houtC (µm) 0.533 0.123 0.259 0.445 0.111
Output S.D. Cytoplasm, σhout

C
(µm) 0.313 0.0648 0.0856 0.212 0.0446

Table 4: Results for second moment quarter-wave 200 layer stack optimization runs.

It is attractive to study quarter wave stacks as they are the optimal solution for the maximum re�ectance
at a given wavelength. There is a large bank of information about quarter-wave stacks (and their anti-re�ective
siblings the half-wave stacks) in optics literature and in the past it has been predicted that combinations of
di�erent wavelength quarter-wave stacks might be a good solution for a uniform silver mirror re�ector (Denton
and Nicol [1965]). However McKenzie et al. [1995] state this is not an appropriate structure for the re�ectance of
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silvery �sh skins.
In this section I take 11 quarter-wave stacks, calibrated for wavelengths over the visible light spectrum, and

input them into to the second moment optimization routine. The results are given in table 4. I �rst note that the
input stacks are shown to be poor uniform re�ectors with high f in2 values (> 0.5). This is because re�ectivities
at wavelengths other than the calibrated one for the stack are generally poor (or even zero).

Upon optimization the majority of the quarter-wave stacks (speci�cally 300, 350, 400, 500, 550, 600, 700,
750nm) increase in thickness dramatically - for example the 550nm stack grows from 17.45µm to 57.35µm thick.
The increase in stack thickness is a departure from what is witnessed for the random stack optimizations where
stack thicknesses change only fractionally. With 300 and 550nm quarter-wave stacks as notable exceptions, the
thickened quarter-wave stacks see a decrease in f-value by a factor 10, resulting in fout2 ' 0.05 which is still
greater than ¯f in2 ' 0.04 for the 200 layer random stacks. The large increase in stack thickness coupled with the
relatively large fout2 values of some quarter-wave stacks may indicate optimization algorithm performance issues.
Renders of the 700nm stack before and after optimization are shown in �gure 9a and clearly indicate the growth
in stack thickness.

The output stacks with similar thickness to the input quarter wave stack (450, 650, 800nm) see a many orders
of magnitude reduction in f-value. The 650nm output stack has the lowest f-value of all stacks presented in this
thesis, with fout2 = 3.39 × 10−6 being a remarkably good approximation to the perfect silver mirror (�gure 9b).
These three quarter-wave stacks and the exceptions noted in the preceding paragraph (300 and 550nm stacks)
become good uniform re�ectors on optimization.

In all quarter-wave cases the output standard deviation of guanine and cytoplasm layer thicknesses is of the
order of tenths of micrometers. This goes some way to demonstrate that variation in optical thicknesses of layers
is needed for uniform re�ectance. The histogram of cytoplasm layer thickness for the 550nm quarter-wave stack
before and after optimization in �gure 10 displays more clearly than the renders of �gure 9 how the optimization
algorithm improves f-value by introducing variation into layer thicknesses.

These results from the optimization algorithm are somewhat curious and it may be dangerous to speculate too
deeply about their meanings. What is certainly true is that that the quarter-wave stacks are not good uniform
re�ectors, for the λ quarter-wave stack is also the λ

2 anti-re�ective half-wave stack. For all quarter-wave stacks
examined there is a signi�cant standard deviation in the guanine and cytoplasm thicknesses of the output (in
general of the same order as the initial thickness respectively). This appears to indicate, along with the results
for the equal layer wave-stacks of �3.4 that it is a variation in thicknesses that is important in producing a silver
re�ectivity. Appendix �A.1 includes renders of all the quarter-wave stack optimizations not displayed here.
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(a) A 700nm quarter wave stack initially ∼ 24µm thick grows to almost 50µm on optimization. The second deviate f-value f2 only
decreases from 0.612 to 0.102 and both these values are greater than any of the random input stacks f-values.

0 5 10 15 20
(b) Diagram of the 650nm multilayer stack before and after optimization second moment f-value optimization. The total stack
thickness has not changed much and the f2 value decreases from 0.597 to 0.00000339. The 650nm quarter-wave output stack is the
best silver mirror re�ector in this thesis using the second deviate measure.

Figure 9: To-scale diagrams of the 700nm (9a) and the 650nm (9b) quarter-wave stacks before and after opti-
mization. Note how the 700nm stack thickens markedly during optimization whereas the total thickness of the
650nm stack only changes fractionally. The after-optimization 650nm stack is a much better uniform re�ector, or
silver mirror. Thickness are in micrometers and colours as �gure 6.
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(a) Input thickness distribution of cytoplasm layers.
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(b) Distribution of cytoplasm layer thicknesses after optimiza-
tion.

Figure 10: Histograms of thicknesses of cytoplasm layers before and after optimization for the 550nm quarter wave
stack. There is a large distortion of the distribution upon optimization as the stack grows and consequentially
the thickness of cytoplasm layers increases.
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3.6 Chirped and Double Chirped Stacks, 50 Layers, Fourth Deviates

0 5 10 15 20 25 30 35 40 45 50 55
(a) Chirped stack with uniformly increasing layer thickness from 0.1 to 2µm. f in

4 = 0.151, fout
4 = 0.0451.

0 5 10 15 20 25 30 35 40 45 50 55
(b) Chirped stack with uniformly decreasing layer thickness from 2 to 0.1µm. f in

4 = 0.151, fout
4 = 0.0435.

0 5 10 15 20 25 30 35 40 45 50 55
(c) Double chirped stack with thickness from 0.1 to 2 to 0.1µm. f in

4 = 0.260, fout
4 = 0.0409.

0 5 10 15 20 25 30 35 40 45 50 55
(d) Double chirped stack with thickness from 2 to 0.1 to 2µm. f in

4 = 0.266, fout
4 = 0.0333.

Figure 11: Diagrams of the 50 layer chirped stacks before and after optimization. It is clear from the renders that
the optimization routine is getting stuck in a local minimum, as much of the chirped layer structure is preserved
by the optimization.

Table 5 contains fourth moment optimizations for four chirped stacks of 50 layers. The chirped stacks all have
input f-value f in4 ' 0.2 which is comparable to the mean input f-value ¯f in4 = 0.153 for the 50 layer random stacks.
They have output f-value fout4 ' 0.04 which is approximately �ve times small than the input f-value and again
compares well with the mean output ¯fout4 = 0.0357 f-value for the 50 layer random stacks. The results tentatively
place chirped stacks on par with the random stacks, and shows they are signi�cantly better silver re�ectors than
either the equal layer stacks or the quarter-wave stacks before optimization.

All the chirped stacks are depicted in �gure 11. It is clear the optimization routine is halting in a local minimum
of the f4 value surface as none of the output stacks appear qualitatively di�erent than the input chirped stacks
apart from the layer thicknesses being distorted slightly. However this slight distortion does improve the f-value
signi�cantly.
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Type Chirped Chirped Double Chirped Double Chirped
Input Layer Thickness Pro�le 0.1 to 2µm 2 to 0.1µm 0.1 to 2 to 0.1µm 2 to 0.1 to 2µm

Input Total Thickness, hinT (µm) 51.45 51.45 50.5 52.4
Input f-value, f in4 0.151 0.151 0.260 0.266

Output f-value, fout4 0.0451 0.0435 0.0409 0.0333
Output Total Thickness, houtT (µm) 50.45 50.47 54.87 52.82

Table 5: Results for fourth moment chirped stack optimization runs, 50 layer stacks.

3.7 Quarter Wave Stack in Guanine, Random Cytoplasm Thickness, Optimizing Square
Deviates

Wavelength (nm) 300 350 400 450 500 550

Input Total Thickness, hinT (µm) 39.35 38.53 38.50 39.14 37.65 41.53
Input Guanine, hinG (µm) 0.0408 0.0476 0.0543 0.0611 0.0679 0.0747

Input f-value, f in2 0.0436 0.0425 0.0274 0.0227 0.0255 0.0302
Output f-value, fout2 0.000449 0.0000136 0.0255 0.00673 0.000106 0.000400

Output Total Thickness, houtT (µm) 33.57 36.46 38.49 39.19 37.55 41.61

Output Mean Guanine, ¯houtG (µm) 0.0510 0.0589 0.0543 0.0613 0.0681 0.0670
Output S.D. Guanine, σhout

G
(µm) 0.0137 0.0190 0.00000548 0.000626 0.0872 0.0167

Output Mean Cytoplasm, ¯houtC (µm) 0.288 0.309 0.334 0.334 0.311 0.353
Output S.D. Cytoplasm, σhout

C
(µm) 0.277 0.272 0.306 0.277 0.283 0.312

Wavelength (nm) 600 650 700 750 800

Input Total Thickness (µm) 40.43 41.31 39.86 37.53 44.49
Input Guanine, hinG (µm) 0.0815 0.0883 0.0951 0.102 0.109

Input f-value, f in2 0.0773 0.111 0.130 0.138 0.138
Output f-value, fout2 0.00000869 0.000127 0.000492 0.00000538 0.0000146

Output Total Thickness (µm) 37.59 41.31 39.86 31.42 47.61

Output Mean Guanine, ¯houtG (µm) 0.0641 0.0865 0.105 0.0719 0.109
Output S.D. Guanine, σhout

G
(µm) 0.0178 0.0232 0.0768 0.0315 0.0613

Output Mean Cytoplasm, ¯houtC (µm) 0.315 0.335 0.346 0.248 0.371
Output S.D. Cytoplasm, σhout

C
(µm) 0.274 0.283 0.367 0.238 0.362

Table 6: Results for second moment guanine layer quarter-wave optimization runs, cytoplasm random in [0, 1],
200 layer stacks.

In this �nal section of results, I examine the the quarter-wave stack of guanine only. This is where in the
input stack the guanine layer thicknesses are all an optical quarter-wavelength and the cytoplasm thickness are
chosen randomly. The results are presented in table 6.

The �rst thing of note is that these semi-random stacks on average have a �ve times lower input f-value f in2
than either the equal layer or quarter-wave stacks. This supports the notion that variation in layer thicknesses is
a requisite for uniform re�ectivity. The average f in2 ' 0.1 is greater than the 200 layer random input stacks and
this may be because in e�ect half of the layers, namely the guanine layers, are redundant in helping to produce
a silvery re�ectance as they are only e�ective at re�ecting one wavelength. An obvious and testable hypothesis
would suggest that the mean second moment f-value for 100 layer random stacks is also about 0.1, as these stacks
would have as much variation in layer thicknesses as the 200 layer guanine quarter-wave stacks.

The output stacks are structured akin to the results of the random stacks i.e. the output thickness is close
to the input thickness and the distributions of cytoplasm layer thicknesses do not change much. Naturally
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the guanine thickness distribution is di�erent from its initial distribution however, with the output distribution
generally being centered on the the initial guanine layer thickness with a small standard deviation.

4 Conclusion

The aim of this project was to learn more about how guanine cytoplasm bi-layers can be manufactured to re�ect
visible light uniformly across the spectrum. This is a relevant topic for explaining how �sh can camou�age
themselves against the silvery surface of water. I developed a method to measure likeness of two spectra as a
number in the range [0, 1]; the lower the number, the �closer� the two spectra are to each other. The method can
be calibrated to favour spectra which are more alike in terms of mean re�ectivity (lower moments), or with fewer
disparate re�ectivities hence more alike in colour (higher moments).

In the methods section I used electromagnetic and optical theory to devise a simple model for the re�ectivity
of a bi-layer stack and stated any assumptions. I identi�ed the variables on which the re�ectivity of the stack is
dependent. In e�ect for the �sh trying to camou�age itself, the parameters under its control in the simple model
are the number of layers in the stack and the thicknesses of the layers (with a limitation on the total thickness
of the stack). I investigate solution stacks which minimize f-value relative to a unity �silver mirror� spectrum
by varying these parameters. A MATLAB numerical optimization routine is used to �nd local solutions of the
f-value surface de�ned by the layer thicknesses.

The �rst result to conclude is that the number of layers in the stack is the easiest way to control the re�ectivity
of a stack. I show that for randomly initialized stacks with layer thicknesses of the same order of magnitude as
the wavelengths of visible light that increasing the number of layers will guarantee a reduction in f-value. The
optimization routine demonstrates that adjusting layer thicknesses in a random stack is only likely to lead to one
of many degenerate local solutions. There is no simple rule to indicate which adjustments to make and the result
is extremely sensitive to slight errors in thicknesses due to the pitted nature of the f-value surface.

Basic stack geometries such as equal layer stacks and quarter-wave stacks are found to be poor uniform
re�ectors. In most cases the optimization algorithm succeeds in reducing the f-values of these stacks in line with
the random stacks, and where appropriate the chirped stacks (50 layer quarter-wave stack results in appendix
�A.2). This is evidence that variation in layer thicknesses is key for uniform re�ectance.

I show that by transforming a quarter-wave stack into a quarter-wave stack for guanine only, random cytoplasm
layer thicknesses, that the re�ectivity of the stack improves and predict that this operation will bring the f-value
in line with a random stack with half the number of layers. This provides further evidence that quarter-wave
stacks are poor solutions in comparison to the stacks with variations in layer thicknesses. It is natural to extend
my analysis to include initial stacks which are superpositions of quarter-wave stacks for many wavelengths. It
seems unlikely given the evidence I present that such a stack would be any better in terms of f-value than one of
the chirped or random in ital stacks as there would be lower variation in the layer thicknesses.

5 Extensions

Throughout the course of this research many questions were put forward by my supervisors and I to try and
gain a deeper understanding of how a silvery camou�age mechanism works. Here I discuss the questions which
fall naturally into three stands. Firstly I scrutinize the simpli�cations and assumptions of my model and how
they may a�ect the predictions made. Secondly I discuss some engineering constraints on how �sh grow guanine-
cytoplasm bi-layers within their skin. And �nally thoughts turn to the predators of the silvery �sh and question
how good the camou�age needs to be to counter this threat.

An initial assumption of the model was that guanine and cytoplasm are both isotropic, non-absorbing and
non-magnetic materials. The last assumption is almost certainly true, perhaps to the extent that the predictions
are accurate to many orders of magnitude. Cytoplasm is a �uid with a disordered structure meaning it should
be isotropic, however it is likely to absorb a small fraction of light particularly at wavelengths which excite the
constituent molecules of the mixture. Guanine is a crystal structured as rhombic platelets of multiple layers of
molecules. The crystal structure is likely to lead to a directional dependence of its optical properties, and the
direction in which the platelets are arranged relative to the crystals suspended in the cytoplasm is likely to the
be the biggest source of error in the model. Guanine is highly transparent but will still absorb a fraction of
propagating visible light. Accounting �rstly for the anisotropic nature of guanine then a degree of absorption
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of the materials in an extended model would be a good way to validate or establish weaknesses in the model
presented here.

Also assumed in my model was that the layers in the skin are perfectly �at and parallel. As can been seen
from the electron micrograph of a cross section of �sh skin in �gure 1 of the introduction, the guanine crystals are
in fact suspended in a continuous �uid of cytoplasm. This means that neither of the assumptions are universally
true for all �sh, and the literature shows di�erent constructions of guanine-cytoplasm stacks in di�erent species
(Kinoshita and Yoshioka [2005] and Parker [2000]). The geometry of the layers in �gure 1 makes �nding an
analytic solution to the re�ectivity hard, and it might be easier to examine superpositions of spectra for stacks
with similar geometry but variation in the positions of boundaries to try understand how this structure a�ects
the overall re�ectivity. It may be possible that the structure of the stack with non-parallel layers may add the
variation into the optical paths which I conclude is vital for a silvery re�ectance in my conclusions.

I established that the optimization process was terminating in a local minima of the f-value surface. There
are two strands to this problem: �rstly I noted that the settings of the optimization routine may need tweaking,
and secondly that there are many almost degenerate solutions of assembling a silvery bi-layer stacks. The latter
issue is discussed in the following notes on the engineering of a stack in a �sh skin and the capabilities of the
predator. I ask is the global solution feasible in terms of construction? And then is it necessary or are other
solutions su�cient? Finally the optimization process fails to account for di�erent angles of incidence of light on
the stack and research is needed into the e�ect it has on the conclusions drawn.

In terms of the construction of a bi-layer in �sh skin, the following points are noted. When the optimization
routine suggests that sub-micrometer adjustments to layer thicknesses may dramatically improve the silvery
re�ectance of the stack, I ask how accurately can a �sh assemble guanine layers, what is the minimum thickness
the layers can be made, and how �at are the layers. I also question how robust the structure is: do the optical
thicknesses of the layers change as a �sh bends and �exes its scales by swimming and breathing. It would be
unrealistic to assume a �sh can spent lots of resources constructing precision optical instruments only for an
elementary process of life to change the structure and destroy any gains. It is for this reason McKenzie et al.
[1995] suggests that the chaotic or random structure of layers is best, as it is robust to error and change.

It would be interesting to consider di�erent functions minimized in the optimization routine. Would it be
more appropriate to devise a function which favours a �at re�ectance spectrum above a spectrum with high mean
re�ectivity. This is the same as asking is a slightly duller but silver re�ectance better than a brighter but slightly
coloured re�ectance. This question could depend on the light conditions and the nature of the surface of the
water. Another function to consider could be one which places a cost to the total volume of guanine used in the
structure, as guanine is an expensive resource for the �sh to machine.

When considering a form of camou�age it is appropriate to ask what the predator is able to see. Can di�erent
predators see di�erent regions and contrasts in the visible spectrum better than others? And what is the resolution
that the predator can distinguish? These questions have consequences for how good the camou�age needs to be,
and ultimately how much resource has to be invested in the manufacture of the bi-layer stacks.
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A Supplementary Results

A.1 Quarter Wave Stack, 200 Layers, Second Deviates, Additional Renders

Figures 12 and 13 are the additional renders of the second moment 200 layer quarter-wave stacks of table 4 in
�3.5.

0 5 10 15 20 25 30 35 40 45 50
(a) 300nm quarter-wave stack.f in

2 = 0.848, fout
2 = 0.000165.

0 50 100 150 200 250 300 350 400
(b) 350nm quarter-wave stack. f in

2 = 0.748, fout
2 = 0.0948.

0 10 20 30 40 50 60 70
(c) 400nm quarter-wave stack. f in

2 = 0.708, fout
2 = 0.0555.

0 2 4 6 8 10 12 14 16 18
(d) 450nm quarter-wave stack. Fractional change in output stack thickness. f in

2 = 0.674, fout
2 = 0.000372.

Figure 12: Part 1 of additional 200 layer quarter-wave stack renders. Part 2 overleaf. Before and after optimization
f-values stated in captions. Thicknesses to scale and measured in micrometers.
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0 50 100 150 200 250 300 350 400 450 500 550
(a) 500nm quarter-wave stack. f in

2 = 0.647, fout
2 = 0.0801.

0 10 20 30 40 50 60
(b) 550nm quarter-wave stack. f in

2 = 0.625, fout
2 = 0.000159.

0 10 20 30 40 50 60 70 80 90 100 110
(c) 600nm quarter-wave stack. f in

2 = 0.609, fout
2 = 0.101.

0 10 20 30 40 50 60 70 80 90
(d) 750nm quarter-wave stack. f in

2 = 0.677, fout
2 = 0.0327.

0 5 10 15 20 25
(e) 800nm quarter-wave stack. Fractional change in output stack thickness. f in

2 = 0.759, fout
2 = 0.00000850.

Figure 13: Part 2 of additional quarter-wave stack renders. Before and after optimization f-values stated in
captions. Thicknesses to scale and measured in micrometers.

24



A.2 Quarter Wave Stack, 50 Layers, Fourth Deviates

Wavelength (nm) 400 600 800

Input Total Thickness, hinT (µm) 3.12 4.68 6.23
Input Guanine, hinG (µm) 0.0543 0.0815 0.109

Input f-value, f in4 0.694 0.422 0.648
Output f-value, fout4 0.000359 0.0103 0.00390

Output Total Thickness, houtT (µm) 3.74 22.00 6.74

Output Mean Guanine, ¯houtG (µm) 0.0685 0.428 0.101
Output S.D. Guanine, σhout

G
(µm) 0.0415 0.495 0.0516

Output Mean Cytoplasm, ¯houtC (µm) 0.0845 0.471 0.176
Output S.D. Cytoplasm, σhout

C
(µm) 0.0455 0.762 0.0812

Table 7: Results for fourth moment quarter-wave optimization runs, 50 layer stacks.

Additional results showing three quarter-wave stack optimizations of 50 layer stacks using fourth deviates.
The results are similar to the 200 layer second moment quarter-wave stack optimizations of �3.5.

1. All input quarter-wave stacks are poor uniform re�ectors with f in4 ' 0.5. The random input stacks have
¯f in4 = 0.153 and are better uniform re�ectors (�3.3).

2. The 600nm quarter-wave stack thickens upon optimization, and the improvement in f-value is a reduction
by factor 40. The output f-value fout4 = 0.0103 is in line with ¯fout4 = 0.0656 of the random stacks and
fout4 ' 0.04 of the chirped stacks.

3. The 400nm and 600nm quarter-wave stacks only fractionally di�erent than the output stacks in total thick-
ness. Their fout4 f-values compare favourably with the random stack optimization runs.

4. All optimized quarter-wave stacks have a variation of layer thicknesses, σhout
G
∼ σhout

C
∼ 0.1µm.
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B Code

B.1 basicmodel.m - Re�ectivity and Transmissivity prediction

1 % basicmode l .m
2 % 6 th December 2008 − Alex Malins
3 % Pred ic t r e f l e c t i v i t y and t r a n sm i s s i v i t y o f a s t r a t i f i e d s t a c k o f i s o t r o p i c
4 % non−magnetic d i e l e c t r i c f i lm s .
5
6 % input v a r i a b l e s
7 N=2; % number o f l a y e r s in the s t a c k
8 n=[1 .84 , 1 . 3 6 5 ] ; % vec to r o f r e f r a c t i v e i n d i c e s o f l a y e r s
9 n_F=1.365; % r e f r a c t i v e index o f f i r s t s em i i n f i n i t e medium
10 n_L=1.365; % r e f r a c t i v e index o f l a s t s em i i n f i n i t e medium
11 h=[0 .25 , 0 . 2 5 ] % vec to r o f t h i c k n e s s e s s o f l a y e r s (microns )
12 lambda =0 . 4 : 0 . 0 0 1 : 0 . 8 ; % vec to r o f wave l eng ths o f i n c i d en t l i g h t ( microns )
13 theta_min=0; % range o f ang l e s o f inc idence o f l i g h t ( rad ians )
14 theta_increment=(pi /180) ;
15 theta_max=(pi /2 ) ;
16
17 no_theta=f loor ( ( theta_max−theta_min )/ theta_increment )+1;
18 theta=zeros (N+2,no_theta ) ;
19 theta (1 , : )= theta_min : theta_increment : theta_max ;
20 the tadeg r e e s=180/pi∗ theta ;
21
22 for j =1:no_theta , % the t a f o r f i r s t l a y e r
23 novern=n_F/n ( 1 ) ;
24 theta (2 , j )=asin ( novern∗ sin ( theta (1 , j ) ) ) ;
25 end

26 for i =2:N, % loop over a l l l a y e r s bar f i r s t
27 novern=n( i −1)/n( i ) ;
28 for j =1:no_theta , % the t a f o r i ' th l a y e r
29 theta ( i +1, j )=asin ( novern∗ sin ( theta ( i , j ) ) ) ;
30 end

31 end

32 for j =1:no_theta , % the t a f o r l a s t s em i i n f i n i t e medium
33 novern=n(N)/n_L;
34 theta (N+2, j )=asin ( novern∗ sin ( theta (N+1, j ) ) ) ;
35 end

36
37 lambdanano=1000∗ lambda ; % wave length vec t o r ( nanometers )
38 k_1=2∗pi . / lambda ; % wavenumber vec t o r (microns^−1)
39
40 for k=1: length (k_1) , % loop through wavenumber vec to r
41 for j =1:no_theta , % loop through t h e t a vec t o r
42 M_TE_i=eye ( 2 ) ; % re s e t 2x2 "M" mat r i c i e s to i d e n t i t y
43 M_TE=eye ( 2 ) ;
44 M_TM_i=eye ( 2 ) ;
45 M_TM=eye ( 2 ) ;
46 for i =1:N, % loop over a l l l a y e r s
47 n_icostheta_i j=n( i )∗ cos ( theta ( i +1, j ) ) ;
48 k_1n_ih_icostheta_ij=k_1(k )∗h( i )∗ n_icostheta_i j ;
49
50 %M_TE_i c h a r a c t e r i s t i c matrix f o r i ' th layer , TE wave
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51 M_TE_i(1 ,1)= cos ( k_1n_ih_icostheta_ij ) ;
52 M_TE_i(1 ,2)=0− sqrt (−1)∗ sin ( k_1n_ih_icostheta_ij )/ n_icostheta_i j ;
53 M_TE_i(2 ,1)=0− sqrt (−1)∗ sin ( k_1n_ih_icostheta_ij )∗ n_icostheta_i j ;
54 M_TE_i(2 ,2)= cos ( k_1n_ih_icostheta_ij ) ;
55 M_TE=M_TE∗M_TE_i;
56
57 %M_TM_i c h a r a c t e r i s t i c matrix f o r i ' th layer , TM wave
58 invn_icos theta_i j=cos ( theta ( i +1, j ) )/ n( i ) ;
59 M_TM_i(1 ,1)= cos ( k_1n_ih_icostheta_ij ) ;
60 M_TM_i(1 ,2)=0− sqrt (−1)∗ sin ( k_1n_ih_icostheta_ij )/ invn_icos theta_i j ;
61 M_TM_i(2 ,1)=0− sqrt (−1)∗ sin ( k_1n_ih_icostheta_ij )∗ i nvn_icos theta_i j ;
62 M_TM_i(2 ,2)= cos ( k_1n_ih_icostheta_ij ) ;
63 M_TM=M_TM∗M_TM_i;
64 end

65 n_Fcostheta_Fj=n_F∗cos ( theta (1 , j ) ) ;
66 n_Lcostheta_Lj=n_L∗cos ( theta (N+2, j ) ) ;
67 A1_TE(k , j )=0.5∗(M_TE(1 ,1)+M_TE(1 ,2 )∗ n_Lcostheta_Lj
68 +(M_TE(2 ,1)+M_TE(2 ,2 )∗ n_Lcostheta_Lj )/ n_Fcostheta_Fj ) ;
69 B1_TE(k , j )=0.5∗(M_TE(1 ,1)+M_TE(1 ,2 )∗ n_Lcostheta_Lj
70 −(M_TE(2 ,1)+M_TE(2 ,2 )∗ n_Lcostheta_Lj )/ n_Fcostheta_Fj ) ;
71 absA1_TE_square=abs (A1_TE(k , j ) )^2 ;
72 absB1_TE_square=abs (B1_TE(k , j ) )^2 ;
73 R_TE(k , j )=absB1_TE_square/absA1_TE_square ;
74 T_TE(k , j )=n_Lcostheta_Lj /( n_Fcostheta_Fj∗absA1_TE_square ) ;
75 err_TE(k , j )=n_Fcostheta_Fj ∗( absA1_TE_square−absB1_TE_square)−n_Lcostheta_Lj ;
76
77 invn_Fcostheta_Fj=cos ( theta (1 , j ) )/n_F;
78 invn_Lcostheta_Lj=cos ( theta (N+2, j ) )/n_L;
79 A1_TM(k , j )=0.5∗(M_TM(1 ,1)+M_TM(1 ,2 )∗ invn_Lcostheta_Lj
80 +(M_TM(2 ,1)+M_TM(2 ,2 )∗ invn_Lcostheta_Lj )/ invn_Fcostheta_Fj ) ;
81 B1_TM(k , j )=0.5∗(M_TM(1 ,1)+M_TM(1 ,2 )∗ invn_Lcostheta_Lj
82 −(M_TM(2 ,1)+M_TM(2 ,2 )∗ invn_Lcostheta_Lj )/ invn_Fcostheta_Fj ) ;
83 absA1_TM_square=abs (A1_TM(k , j ) )^2 ;
84 absB1_TM_square=abs (B1_TM(k , j ) )^2 ;
85 R_TM(k , j )=absB1_TM_square/absA1_TM_square ;
86 T_TM(k , j )=invn_Lcostheta_Lj /( invn_Fcostheta_Fj∗absA1_TM_square ) ;
87 err_TM(k , j )=invn_Fcostheta_Fj ∗(absA1_TM_square−absB1_TM_square)− invn_Lcostheta_Lj ;
88 end

89 end
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B.2 stacksquaredresiduals.m - Calculation of mean square deviates

1 % s t a c k s q u a r e r e s i d u a l s .m
2 % 6 th December 2008 − Alex Malins
3 % Ca l cu l a t e squared r e s i d u a l d e v i a t e s from de s i r ed spectrum fo r normal
4 % inc i d en t p lane l i g h t on a mu l t i l a y e r s t a c k .
5 % Input N−1 s q r t l a y e r t h i c k n e s s e s .
6
7 function f v a l u e = s t a c k s qua r e r e s i dua l s ( root2h )
8
9 % Var iab l e s
10 [ speclambda , specR]= text read ( ' spectrum . z ' , '%f  %f ' ) ; % read de s i r ed spectrum
11 N=200; % number o f l a y e r s
12 n_F = 1 . 3 6 5 ;
13 n_G = 1 . 8 4 ; % guanine r e f r a c t i v e index
14 n_C = 1 . 3 6 5 ; % cyctop lasm r e f r a c t i v e index
15 n_L = 1 . 3 6 5 ;
16 s t a ck th i c kn e s s =2000; % t o t a l s t a c k t h i c kn e s s
17 lambda =0 . 3 : 0 . 0 0 1 : 0 . 8 ; % vec to r o f wave l eng ths o f i n c i d en t l i g h t ( microns )
18
19 h_N=0;
20 for i =1:1 :N−1,
21 h( i )=root2h ( i )∗ root2h ( i ) ; % i ' th l a y e r t h i c kn e s s
22 h_N=h_N+h( i ) ;
23 end

24 h_N=stack th i ckne s s−h_N; % N' th l a y e r t h i c kn e s s
25
26 for i =1:1 :N/2 ,
27 n(2∗ i )=n_C;
28 n(2∗ i−1)=n_G;
29 end

30
31 lambdanano=1000∗ lambda ; % wave length vec t o r ( nanometers )
32 k_1=2∗pi . / lambda ; % wavenumber vec t o r (microns^−1)
33
34 r e s i d e r r o r =0;
35 for k=1: length (k_1) , % loop through a l l wavenumbers
36 M_TE_i=eye ( 2 ) ;
37 M_TE=eye ( 2 ) ;
38 for i =1:N, % loop over a l l l a y e r s
39 i f ( i==N) ,
40 k_1n_ih_i=k_1(k )∗h_N∗n( i ) ;
41 else

42 k_1n_ih_i=k_1(k )∗h( i )∗n( i ) ;
43 end

44
45 M_TE_i(1 ,1)= cos ( k_1n_ih_i ) ;
46 M_TE_i(1 ,2)=0− sqrt (−1)∗ sin ( k_1n_ih_i )/n( i ) ;
47 M_TE_i(2 ,1)=0− sqrt (−1)∗ sin ( k_1n_ih_i )∗n( i ) ;
48 M_TE_i(2 ,2)= cos ( k_1n_ih_i ) ;
49 M_TE=M_TE∗M_TE_i;
50 end

51 A1_TE(k )=0.5∗(M_TE(1 ,1)+M_TE(1 ,2 )∗n_L+(M_TE(2 ,1)+M_TE(2 ,2 )∗n_L)/n_F) ;
52 B1_TE(k )=0.5∗(M_TE(1 ,1)+M_TE(1 ,2 )∗n_L−(M_TE(2 ,1)+M_TE(2 ,2 )∗n_L)/n_F) ;
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53 absA1_TE_square=abs (A1_TE(k ) )^2 ;
54 absB1_TE_square=abs (B1_TE(k ) )^2 ;
55 R_TE(k)=absB1_TE_square/absA1_TE_square ;
56 r e s i d e r r o r=r e s i d e r r o r+(R_TE(k)−specR (k ) )^2 ; % f−va lue moment i s exponent here
57 end

58 f va l u e=r e s i d e r r o r /( length (k_1 ) ) ;
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