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TIME STEP ERROR IN MOLECULAR DYNAMICS 
1. Abstract 
In this paper solutions to dynamical systems obeying Hamiltonian mechanics are obtained using algorithms from 

numerical integration. Symplectic integrators are preferred and applied to test problems such as a simple 

pendulum and a spring pendulum. Ascertaining the most computationally efficient route to solution has 

traditionally been a trade off between a employing higher order integrators and lowering the time step at a set 

order. It is proposed that a new set of time reversible integrators, which solve a ‘modified’ Hamiltonian instead 

of the exact, may perform better than standard symplectic integrators of an equivalent order. Our investigation of 

the performance of the new schemes against established integrators on the test problems finds no evidence to 

support this claim. The study moves on to analyse the effect of discrete jumps in energy of the numerical 

solution, which exist for certain trajectories of the spring pendulum, on the performance of the integrators. 

Finally we study numerical solutions to a Lennard-Jones fluid, where energy jumps are prevalent and the system 

provides a much sterner test for the integrators than the two pendulum systems. 
 

2. Introduction 
This paper studies numerical integration schemes used to solve the ordinary 

differential equations (ODEs) arising from a number of physical systems. It is common for a 

formulation of a dynamical system to result in a set of ODEs which cannot be solved using 

analytical methods. Under these circumstances the best route to a solution trajectory is to use 

a numerical integrator to solve the equations for a future time, given an initial state of the 

system. Integrators can approximate the exact solution to any specified degree of accuracy, 

with the only limit being computational time required to execute the algorithm - hence the 

integrator efficiency is critical!  

This paper builds on the research in Practical Construction of Modified Hamiltonians 

by Skeel and Hardy (2001), where the focus is on the economics of numerical schemes in 

solving dynamical systems arising from Hamiltonian mechanics. The study is limited to 

conservative systems, where the total energy of the system remains constant with respect to 

time. Symplectic integrators are designed to solve conservative systems, with the solution 

Hamiltonian being bounded in time, unlike time irreversible schemes where the solution 

energy is allowed to drift. 

We implement a series of established integrators on some physical test problems and 

develop measures for the performance. This requires careful analysis of the relative errors of 

the numerical solutions, with the theoretical rate of convergence to the exact solution 

trajectory being judged against the observed rate of convergence. 
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The performance analysis first requires an understanding of the motion exhibited by 

the system. Graphs of the motion of the system are examined, and in certain cases Poincaré 

sections are plotted, to establish underlying nature of the motion. The data for these graphs is 

obtained via brute force – using a small time step and an algorithm with a high theoretical 

degree of accuracy. 

The expertise gained is then transferred to an analysis of a new type of integrator, 

proposed in An Augmented Verlet Algorithm by R.C. Ball (preprint 2007). These integrators 

solve a ‘modified’ Hamiltonian, instead of the exact Hamiltonian of the physical model. A 

simple procedure is presented here to generate the ‘modified’ Hamiltonian and then the 

performance of the scheme is directly contrasted against the traditional schemes. Of pertinent 

interest is establishing the most computationally efficient scheme, with least burden on 

resources, over the test problems. The paper then moves on to discuss the limitations of each 

scheme and suggests future directions research in this area could take. 
 

3. Background Theory 
The study focuses solely on systems obeying Hamiltonian mechanics. The 

Hamiltonian of a system can be regarded as the total energy of the system and is a constant 

with respect to time for conservative systems. The Hamiltonian ),( jj pqH  is a function of the 

generalised coordinates of the system },...,1|{ Njq j =  and their respective canonical 

momenta },...,1|{ Njp j = . In non-magnetic systems this may be written as the sum of the 

total kinetic energy T  and total potential energy V  of the system in question, 

 VTH +=  (1). 

Hamilton’s equations can then be used to find the differential equations of motion which 

determine the motion of the system, 
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The study examines three Hamiltonian systems: the simple and spring pendulums, and 

a Lennard-Jones Fluid. The mathematical models for these systems, including any implied 

assumptions, are presented below. 
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3.1. The Simple Pendulum 
 Polar ),( θr  coordinates form the natural coordinate system for the simple pendulum, 

which moves on a 2-dimensional plane in space. 

 
Fig.1. Diagram of the simple pendulum system. 

 

Assume the only forces acting on the mass are due to its weight and tension in the rigid rod, 

with the weight of the rod being insignificant. The rod is free to pivot at the fixed point. Using 

(1) the Hamiltonian is written: 
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Note how the Hamiltonian is independent of time. An application of Hamilton’s equations (2) 

gives, 
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These are the equations of motion for the system (4), with the non-linearity of the second 

meaning obtaining a solution for all times via analytical techniques is not possible. 
 

3.2. The Spring Pendulum 

 Cartesian coordinates ),( yx  are used for the spring pendulum (Fig. 2), with motion 

restricted to a two dimensional plane. Fig. 1 depicts the setup involved. 
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Fig. 2. Diagram of the spring pendulum system. 

 

The spring has a very small mass compared to the mass which is supports, and is free 

to pivot at the fixed point. Assume the only forces which act upon the mass is its weight and a 

restoring/tension force due to the spring. The Hamiltonian and Hamilton’s equations are: 
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(6). 

 There is only one dimensionless parameter in this model of the spring pendulum, K, 

 
mg
klK 0=  (7). 

Attention is paid to the special case where the natural frequency of the transverse oscillations, 

where the system is equivalent to a simple pendulum, is twice that of the natural frequency of 

the vertical oscillations of an equivalent mass spring system. For this to occur, 

 3=K  (8). 
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3.3. The Lennard-Jones Fluid 
 The Lennard-Jones potential between two particles separated by a distance r is given 

by, 
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whereσ  is the radius of zero potential andε  is the depth of the potential well. Refer to Figure 

3. 

An ensemble of N point particles in a three dimensional space interact subject to the 

Lennard-Jones potential. At long ranges each particle pair experiences an attractive force and 

at a short range the force is repulsive. In this study, the particles are constrained by a 

harmonic potential well centred on the origin. There are no gravitational forces acting on the 

particles. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Graph of Lennard-Jones potential versus separation distance of particles. 

 

 For an ensemble of N particles, with particle i at position ),,( iii zyx and mass im , the 

Hamiltonian of the system is, 
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where 5.0222 ])()()[( jijijiij zzyyxxr −+−+−=  is the distance between particles i and j. 

Application of Hamilton’s equations for particle i give, 
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(11). 

 

4. The Numerical Schemes 
Numerical schemes for solving the differential equations, resulting from Hamiltonian 

mechanics, involve marching the system forwards through time in discrete stages. The 

schemes are called integrators and the process of converting continuous differential equations 

to discrete difference equations is known as discretization. For basic integrators the discrete 

stages move the system forwards a fixed amount of time called the time step, calculating new 

estimates for the positions and momenta of the system from previously known values. All the 

schemes studied involve underlying updates of the system coordinates using difference 

equations (12), concatenations of which are employed in more complex integrators to form an 

overall stage. 
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(12a), 
 

(12b). 

The values τβα ,,  are constants unique to each integrator. ))(( τiqF  is a function, independent 

of the momenta, equivalent to a force.  

For simplicity an overall time step tΔ  is defined for each step of an integrator (13). In 

general the number of the ))(( τiqF  ‘force’ calculations involved per time step is the 

dominant computational exertion when running the numerical simulations. 
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(13). 

The subject of this paper to analyse how accurately the exact dynamics of the physical 

test systems are predicted by the integrators, as a trade off with the computational 

requirements needed for them to run. Analytically the rate of convergence of the estimates to 

the exact trajectories can be calculated by comparing the integration method to a Taylor 

expansion of the true dynamics. This shows that the rate of convergence is proportional 
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to γ)( tΔ , whereγ  is a positive integer known as the order of accuracy of the integrator. 

However this does not depict to full story of the errors introduced in the discretization of the 

continuous dynamics. 

 It is known that integrators which are symplectic perform more strongly than non-

symplectic integrators in solving Hamiltonian. This is because symplectic integrators 

conserve a Hamiltonian slightly perturbed from the exact Hamiltonian through time, whereas 

non-symplectic integrators allow the energy of the system to drift. 

 The paper moves on to study the performance of a recent set of symplectic integrators, 

employing the philosophy of solving a ‘modified’ Hamiltonian. The integrators are now 

defined. 
 

4.1. Euler’s Method 
 Euler’s method is the simplest integrator where both the positions and momenta are 

updated simultaneous for each time step. The algorithm is first order accurate and time 

irreversible, meaning there is no constraint on the energy of the predictions. There is one 

force calculation per time step. 
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 (14). 

 

4.2. Symplectic Algorithms 
 Symplectic algorithms are time reversible and theoretically their solution energies are 

bounded. In the algorithm the positions and momenta are updated alternately, using the most 

recent estimate of the corresponding coordinate in the calculation. It is natural to represent 

these methods using the following notation: 

A 2
1  

B 1 

A 2
1  

Table 1. Normalised 2nd order Verlet coefficients. Note how sum of both the A and B coefficients is 1. 

 

where the time reversibility of the algorithm is clear. 

In Table 1, A represents an update of the either positions or the momenta (there is no 

specification as to which) using respective formula in (12); the second column contains the 
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fractional value tΔ
α or tΔ

β  (the proportion of a time step update the coordinates experience) 

andτ  is the time of the most recent estimate of the corresponding coordinate. Conversely for 

update B.  

Table 1 depicts the standard, second order accurate, Verlet algorithm. If the B step is 

an update of the momenta, there is one force calculation per time step. It may appear that if 

the A steps were updates of momenta, there would be two force calculations per time step. 

However it is entirely equivalent to programme the scheme as, 

A 1 

B 1 

where the two A updates in Table 1 have been merged. Thus the algorithm reduces to one 

force calculation per time step. Care must be taken as the positions and momenta are half a 

time step tΔ  out of phase, which has implications for the calculation of the Hamiltonian and 

for first time step away from the starting conditions. These problems are easily surmounted by 

interpolating one of the two coordinates to the times that at which the other is known. 

The principle of unifying the first and last steps can be applied to all the symplectic 

algorithms. 

It is worth noting that although there is no rule as to which of the coordinate updates A 

and B represent, the simulations are distinct and usually produce different numerical solutions 

– this implies for a given simulation one solution will be more accurate than the other! This is 

looked at in the results section of this paper. 

Three types of symplectic integrators with fourth order accuracy are studied. The first 

is a three force calculation method (Forest and Ruth, 1989) with coefficients in Table 2a. 

A )222( 3/13/1
6
1 ++ −  

B )222( 3/13/1
3
1 ++ −  

A )122( 3/13/1
6
1 −+− −  

B )22( 2
13/13/1

3
2 ++− −  

A )122( 3/13/1
6
1 −+− −  

B )222( 3/13/1
3
1 ++ −  

A )222( 3/13/1
6
1 ++ −  

Table 2a. A three force calculation, fourth order, symplectic integrator (Forest & Ruth, 1990). 
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Tables 2b and 2c contain the coefficients for two more fourth order accurate 

symplectic integrators; Table 2b contains a Mclachlan, 1995, scheme involving five force 

calculations per time step and 2c a six force calculation scheme (Blanes and Moan, 2000). 

A 0.14 

B 0.28 

A 0.452733214233835 

B 0.625466428467670 

A -0.092733214233835 

B -0.810932856935340 

A -0.092733214233835 

B 0.625466428467670 

A 0.452733214233835 

B 0.28 

A 0.14 
Table 2b. A five force calculation, fourth order, 

symplectic integrator (Mclachlan, 1995). 

A 0.079203696431196 

B 0.209515106613362 

A 0.353172906049774 

B -0.143851773179818 

A -0.042065080357720 

B 0.434336666566456 

A 0.219376955753500 

B 0.434336666566456 

A -0.042065080357720 

B -0.143851773179818 

A 0.353172906049774 

B 0.209515106613362 

A 0.079203696431196 
Table 2c. A six force calculation, fourth order, 

symplectic integrator (Blanes & Moan, 2002). 
 

4.3 The ‘Modified’ Hamiltonian Method 
 The philosophy in the standard symplectic integrators above is to cancel a specified 

number terms the Taylor expansion of the true trajectory, but this leaves a series of higher 

order ‘truncation’ errors unaccounted for. The concept behind the ‘modified’ Hamiltonian 

integrators involves cancelling terms in the Taylor series, once again to a specified degree, 

then counter terming higher order truncation errors by adding a correction to the Hamiltonian 

of the system. The integrators solve the dynamics of this ‘modified’ Hamiltonian, not the 

exact Hamiltonian, resulting in numerical solutions closer to that of the true dynamics.  

Two integrators are tested with a basis equivalent to that of a second order, two force 

calculation, symplectic integrator. However. The two schemes are defined in Table 3. Note 

how updates A and B are replaced by Q and P, which represent updates in the positions and 

momenta respectively, i.e. there is now a constraint imposed by the algorithm as to which of 

the position or momenta updates occur at stages A and B. This is a consequence of adding a 

term to the Hamiltonian of the system.  
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Q 32
1

2
1 −  

P 2
1  

Q 3
1  

P 2
1  

Q 32
1

2
1 −  

Table 3a. A fourth order, position 

update first, modified Hamiltonian 

symplectic integrator. 

)359(24
33

+
+=λ  

 

P 6
1  

Q 2
1  

P 3
2  

Q 2
1  

P 6
1  

Table 3b. A fourth order, 

momentum update first, modified 

Hamiltonian symplectic integrator. 

72
1=λ  

Tables 3a and 3b. replace 

updates  A and B by Q and P, 

as the coordinate updated 

during each stage is now 

explicit. Q represents an 

update in the position 

coordinates (12a), and P an 

update in momentum 

coordinates.  Numerical 

schemes by R.C. Ball (preprint 

2007). 

The modified Hamiltonian H~ solved is given by: 

 ff ..)(~ 12 −ΜΔ+= tHH λ  (15) 

H is the exact Hamiltonian of the system, Μ  the inertia tensor of the system, λ  a constant of 

the algorithm, and V−∇=f the force. H~  is then used as the basis for the integration schemes 

in Table 3, in a completely equivalent manner to the Verlet algorithms and the exact 

Hamiltonian H . 

 The additional term in the perturbed Hamiltonian generates extra terms on the 

calculation the second of Hamilton’s equations for each test system. The resulting equations 

for the simple pendulum (16) and spring pendulum (17) are given: 
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(16) 

 

(17a) 

 

(17b) 

The scope of this paper does not extend to a solution of the Lennard-Jones fluid using the 

modified Hamiltonian integrators.  

These increased complexities of the differential equations require more ‘force’-type 

calculations per time step. Objective measurement of the extra computational exertion is 

difficult, but this means the ‘modified’ integrators require more than the two ‘force’ 

calculations per time step than first appearances suggest. 
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5. Computational Details 
 Numerical data is computed from original programs written jointly by the authors of 

this paper. The code was written in C on a Microsoft Windows platform and compiled using 

the GNU Compiler Collection. The programs output numerical data to files in basic text 

format. This data is then read into MATLAB, through which all graphs are drawn. 

 Although the code generalised to allow any physical variables, in this paper we set 

physical constants to one, unless specified otherwise, so the results are independent of any 

physical unit. In particular for the simple pendulum conditions (18) are used, and (19)  (20) 

for the spring pendulum and Lennard-Jones fluid respectively. 

 1=== lgm  

10 === lgm  

1,1.0,25.0 === kσε  and 1=im Ni ≤≤∀1  

(18), 

(19), 

(20). 

  

6. Results and Discussion – Simple Pendulum 
 The analysis of the performance of the numerical integrators begins with examining 

the difference between symplectic and non-symplectic integrators. Figure 4 shows how the 

total energy of the system (i.e. the Hamiltonian) is constrained in the symplectic Verlet 

solution, but diverges for the time irreversible Euler solution.  
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-0.1 

time

en
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gy

Verlet - position first
Euler

 
Fig 4. Energy versus time for simple pendulum. Conditions: ]5,0[,0,1,2.0

00 ∈===Δ tpt θθ  and (18) with an 

initial update in position for the Verlet method. 
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 Closer examination of the energy time plots for the Verlet algorithm indicates the 

numerical energy oscillates within bounds of energy. This behaviour is mirrored in the energy 

time plots of the three higher order symplectic schemes and the ‘modified’ Hamiltonian 

schemes. To quantify this fluctuation, the root mean square variation RMSEδ  (21) in the 

solution energies from the approximate Hamiltonian (the mean energy of the numerical 

solution E ) is calculated for a number in time steps.Let n be the number of data points, then, 
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(21), 

This measure of energy fluctuation we call the energy error and the results show this 

declines as the simulation time step is reduced. The theory predicts a γδ )( tERMS Δ∝  

proportionality between the energy error and the time step, where γ  is the order of the 

integrator. To test this power law a graph of )log( RMSEδ  versus )log( tΔ is plotted and it is  

checked that the data falls on a straight line. If so a linear line of regression is fitted to the 

data, with the gradient of the line providing an estimate for the orderγ . 
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Key   Integrator                     Gradient
2nd Order Verlet            2.0008
Forest & Ruth               4.0035
Mclachlan                     4.0009
Blanes & Moan             4.0000
Modified Hamiltonian      4.0006 Gradient=2

Gradient=4

 
Fig 5. )log( RMSEδ  versus )log( tΔ , Conditions: ]1000,0[,0,1,1.0:01.0:01.0

00 ∈===Δ tpt θθ  and (18) with 

an initial update in position for all methods. Dashed line overlay has gradient 2, black line overlay gradient of 4. 

In the legend, the gradients are for the lines of regression fitted to the corresponding data set. 
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In Figure 5, the notation 1.0:01.0:01.0=Δt  means in the simulation tΔ  begins at 

0.01, finishes at 0.1, and takes values of natural multiples of 0.01 in between. The graph 

shows clear support the theoretical proportionality relationships when taking into account the 

spread of the data and the gradients of the regression lines. The corresponding graph where 

the schemes have an initial update of the momentum of the pendulum also supports the 

theoretical power law linking the energy error and the time step. 

As an aside to measure the rate of divergence of the energy of the Euler solutions from 

the exact Hamiltonian, liner regression lines are fitted to the straight sections of the energy 

time graphs (from 0=t ) for a sample of time steps. The gradient of these lines decrease as 

the time step reduces. A logarithmic plot of the gradients versus time step results in a linear 

series of gradient one, which suggests the rate of divergence of the energy is directly 

proportional to the time step. The data supports this theoretical first order performance of 

Euler’s method. 

 Another measure of the dependence of integrator accuracy on time step is to examine 

the rate of convergence of the individual coordinates. In the absence of an exact solution, a 

best estimate for a coordinate value at a given time is obtained from the smallest time step 

( }min{ tΔ ) solution available. Then a relative error of higher time step solutions with respect 

to this approximation of the solution is calculated. In Figure 6 the relative error in the position 

coordinate theta, )90()90(ˆ
}min{ tΔ−= θθθ at simulation time 90=t , is shown as a function of 

the time step in a logarithmic graph. 
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2nd Order Verlet         2.1252
Forest & Ruth            4.0379
Mclachlan                  4.0265
Blanes & Moan          4.0222
Modified - four force    4.0074
Modified - two force    4.0341

Gradient=2

Gradient=4

Fig 6. ))90(ˆlog(θ  versus )log(η , Conditions: 90,0,1],017.0,0015.0[
00 ===∈ tpθθη  and (18) with an initial 

update in momentum for all methods. Dashed line overlay has gradient 2, black line overlay has gradient of 4. 
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 The measure of the relative coordinate errors is less robust than the measure of the 

energy errors. As the time step tends to zero the energy error must also become zero, and the 

solution energy becomes exact. The measure of the relative coordinate errors is less robust 

however. When dealing with a coordinate error using a time step of a similar size to }min{ tΔ , 

the magnitude of the coordinate error may be of the same order as the absolute difference 

between the solution coordinate and the exact coordinate value. This could result in the 

coordinate error data for time steps slightly greater than }min{ tΔ  being unreliable. 

Figure 6 introduces an effective time step measure η  (eta) which accounts for the 

number of force calculations fn  used by the integrator per overall time step tΔ . We assume 

that each force calculation is the only computational exertion during the running of an 

integration algorithm, meaning the updates the position coordinates and simulation requires 

zero processing power. This assumption implies that the computational workload to execute a 

time step of each integrator is directly proportional to the number of force calculations in that 

time step. For a given η  this allows direct comparison of the magnitude of the errors in the 

approximate solution between the different integrators where, 

 

fn
tΔ

=η  
 

(22). 

 Objectively it is difficult to define the number of force calculations per time step for 

the modified Hamiltonian schemes because of the extra calculations required in the momenta 

update steps. The quantity the extra work involved depends firstly on the mathematical model 

of the system and secondly on the efficiency of the code (the extra terms resulting from the 

Hamiltonian perturbation in the momenta steps are in some way similar to the standard force 

calculations). This means there is no universal value of fn  for the modified integrators. To 

determine the exact value of fn would involve somehow measuring the computational 

workload during the simulation, however such depth is considered superfluous in this study as 

one must not lose sight or appreciation of the initial assumption that all calculations, bar the 

force, are negligible.   

On the most basic level the modified integrators require two standard force 

calculations per time step. Examination of the extra calculation involved in the pendulum 

systems leads us to a reasonable estimate of a total of four force calculations per overall time 

step. However conservative bounds for fn would be between two and seven force calculations 
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per time step, and these are borne in mind when comparing the modified schemes to the 

standard fourth order integrators. 

 Returning to Figure 6 it is clear that the second Verlet algorithm is uncompetitive 

against the fourth order schemes with coordinate errors of at least three orders of magnitude 

greater at fixed η . This result is confirmed by the corresponding relative momentum error, 

θp̂ , graph of Figure 6 and the η  equivalent graph of Figure 5 (i.e. )log( RMSEδ  versus )log(η ).  

 For the simple pendulum there exists an exact solution for small amplitude 

oscillations, where the pendulum displays simple harmonic motion with a constant period of 

motion given by (23). From the numerical simulations at small amplitudes, a period is 

interpolated from the solution data by finding the time between two successive changes in 

sign of the momentum. When these zero values of momentum fall in between two data points, 

the zero time is found by linear interpolation. The error in this interpolation is small when the 

period of motion is very much greater than the time step tΔ . The absolute difference between 

the interpolated period and the exact, from (23), can be used as a measure of the error in the 

numerical solution. 
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Fig 7. log(absolute period error) versus )log(η , Conditions: 0,01.0],17.0,08.0[

00 ==∈ θθη p and (18) with an 

initial update in momentum for all methods. Exact period π2=Τ . Black line overlay has gradient of 4. 
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 Figure 7 shows the absolute period error measure to be less stable than previous error 

measures. For larger values of η  the linear interpolation of the momentum to find the period 

introduces a noise to the data. It is worth noting that at the zero value of the momentum, the 

acceleration of the bob is at greatest so the momentum value is changing at its fastest rate, 

which increases the possible error in the linear interpolation. Interpolating the zero value of 

the angle theta does not avoid this problem as the velocity of the bob is greatest at this point 

during the motion. However the section of the graph at larger values of η does suggest a 

fourth order power law relating the period error to the time step, as shown by the overlaid 

black line of gradient four. At smaller values of η the convergence breaks down. This is due 

to the small angle approximation used in the derivation of the exact solution. As a result at the 

smaller time steps the integrators converge to a period of motion which is exceeds the 

accuracy of the π2=Τ  period calculated from (23). 
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Fig 8. RMSEδ  versus 4η , Conditions: ]1000,0[,0,1],02.0,0008.0[

00 ∈==∈ tpθθη  and (18).  Four force 

calculation modified Hamiltonian integrators. Discrete data represented as continuous lines by joining up data 

points with straight lines as to bring out approximate gradients of the data – the data set for each line contains ten 

values equally spaced across the axis of 4η . Initial update in position (q) integrators are represented by dashed 

lines, initial update in momentum integrators (p) by solid lines.  

 

 Now we are in a position to compare the fourth order integrators in terms of 

performance. Theory says the error measures are directly proportional 4)( tΔ , along with 4η  

by adjustment of the constant of proportionality, and numerical evidence for the fourth order 

dependence is clear. Interest transfers to the constant of proportionality in the power law 
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relationship, which depends explicitly on the system and its physical conditions. The smaller 

this constant is, the smaller the magnitude of the errors in the numerical solution and hence 

the more accurate the integrators will be. Graphs of the error measures versus 4η  will have a 

gradient of this constant. 

 Figure 8 is a plot of the energy error versus 4η  and the first clear result is that the 

Blanes & Moan integrator is the most efficient of the standard fourth order schemes, under the 

specified conditions, as its graph has the shallowest gradient. It is difficult to draw a 

distinction between the Forest & Ruth and the Mclachlan integrators as the result depends on 

the initial coordinate updated in the scheme. For the modified Hamiltonian methods the lie of 

the results with respect to the standard fourth order integrators depends on the value of fn  

used. This is discussed more in Figure 9, but for 4=fn  the results do not indicate that the 

modified Hamiltonian integrators are in any way superior. 

 
Fig 9. )92(ˆθp  (relative momentum error) versus 4η , Conditions: 92,0,1],02.0,0008.0[

00 ===∈ tpθθη  and 

(18).  The red shaded region depicts the spread of modified Hamiltonian integrator results depending on the 

value of fn chosen from the region ]7,2[ . Discrete data represented continuously as in Figure 8.  

 

 Figure 9 addresses directly the discrepancy regarding the value of fn  used for the 

modified Hamiltonian schemes. The red shaded region shows the spread of possible graphs 

for the modified Hamiltonian integrators depending on value of fn  used from the suggested 
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bounds of ]7,2[ . This could mean the modified integrators are the best performing, or the 

second worst behind the Forest & Ruth scheme. This solidifies the conclusion drawn from 

Figure 8 – there is no evidence to suggest the new modified integrators show an improvement 

in computational performance terms over the standard fourth order integrators. Figure 9 also 

shows a clear distinction between the Forest & Ruth and Mclachlan integrators, with the latter 

performing more strongly. 
 

6.1 Results and Discussion – Spring Pendulum 
 The motion exhibited by the spring pendulum is more complex than that of the simple 

pendulum, with three non-trivial types of motion displayed: periodic, quasiperiodic and 

chaotic. The system involves a total of four position and momentum coordinates, which allow 

Poincaré sections to be used to identify the underlying nature of the motion. Interest is taken 

in the special case, 3=K , where the natural frequency of transverse motion is twice the 

natural frequency of vertical oscillations and at certain energies chaotic motion is displayed.  
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Fig 10a. Poincaré section showing quasiperiodic 

motion. Conditions: 
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Fig 10b. Poincaré section showing chaotic motion. 
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Uniform conditions for Figures 10a and 10b: 3],200,0[,01.0 =∈=Δ Ktt  and (19). Data generated using 

2nd Order Verlet integrator with an initial update in position. 
 

 Analysis of the Poincaré sections indicates that the type of motion exhibited depends 

on the Hamiltonian of the system. For the absolute minimum system energy, 

)( 0min lmgH k
mg +−= ,  the motion is trivial as the bob is fixed in a stable equilibrium position, 

represented by a single point on a Poincaré section. Increasing the system energy results in 
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two types of motion being displayed, periodic and quasiperiodic. Periodic motion is shown by 

two or more fixed points on a Poincaré section and quasiperiodic by bounded curves in the 

phase space (Figure 10a). Further increase of the system energy can lead to chaotic motion, 

along with periodic and quasiperiodic, which is represented by a bounded region of points on 

the Poincaré section (Figure10b). At the high energy limit, the spring pendulum reverts to a 

periodic orbit, as the energy stored in the spring dominates the motion of the bob. 

At a given energy the type of motion displayed depends on the system trajectory, and 

hence the starting conditions of the system. The type of motion displayed can be identified by 

drawing a Poincaré section from the numerical data. The knowledge borne from this analysis 

means the system can be initialized in a trajectory of displaying any type of motion, meaning 

integrator performance can be tested on each. 
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Fig 11. RMSEδ versus 4η , Conditions: ]105,0[,0,4.1,2.0],02.0,0008.0[

0000 ∈==−==∈ tppyx yxη , 

3=K and (19).  Spring pendulum displaying quasiperiodic motion. Discrete data represented as continuously 

with ten equally spaced data points per line. 

 

 The story of the integrator performance on the simple pendulum transfers well to the 

results seen for the spring pendulum in periodic, quasiperiodic and chaotic motion under most 

conditions. The energy time graphs of the numerical solutions for these types of motion 

oscillate and are bounded (Figure 12a). Direct comparison of integrator performance using the 
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energy is shown in Figure 11, with the modified Hamiltonian integrators once again failing to 

outperform the standard fourth order integrators. It is interesting to note that the standard 

fourth order integrators have ‘paired up’, with position first and momentum first orientations 

showing similar performance, whereas the position first modified integrator clearly 

outperforms the momentum first. This is a consequence of the two modified schemes being 

mutually exclusive. The corresponding coordinate error graphs support Figure 11. 
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Fig 12a. Solution energy deviation from exact Hamiltonian, 1300.3=H , versus time. Conditions: 

 3],50,0[,0883.0,6193.2,7120.1y , 0.9722,1.0
0000 =∈==−=−==Δ Ktppxt yx  and (19). System in 

quasiperiodic motion.  
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Fig 12b. Solution energy deviation from exact Hamiltonian, 1300.3=H , versus time. Conditions: 

 3],50,0[,5.1,5.0,5.1y , 1.0,1.0
0000 =∈=−====Δ Ktppxt yx  and (19). System in chaotic motion. Notice 

the discrete jumps in energy of the solution, occurring when the trajectory is close to the origin.  

 

 We now discuss the trajectories of the motion which pass close to the origin, )0,0( , of 

the system. The magnitude of the errors in the numerical solution for these trajectories is 

appreciably larger than solutions to trajectories always away from the origin, even with the 

same energy, physical system variables (not initial conditions!) and integration scheme. This 
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is depicted by Figures 12; in 12a a system of exact energy (and hence initial energy) of 3.1300 

undergoes a quasiperiodic trajectory. Figure 12b also shows a trajectory, this time chaotic, of 

energy 3.1300, with a solution is obtained using the same integration scheme and parameters 

as in 12a. The graphs show of the deviation of the solution energy from the exact energy 

(3.1300). There are clear discontinuities in the energy deviation of Figure 12b, resulting in an 

energy fluctuation one hundred times larger in magnitude than the trajectory in Figure 12a, 

resulting in a significantly less accurate solution. On an appropriate scale, the energy 

fluctuations between the discontinuities in Figure 12b are of the same order as those in 12a. 

Correlation of the times of the discontinuities to the solution data shows they occur when the 

trajectory approaches the origin. Conversely, for all simulations researched, whenever the 

trajectory approaches the origin, a discrete jump in energy is witnessed. 

 The reason why these jumps occur is clear on re-examination of Hamilton’s equations 

for the spring pendulum (6). For the second equations, which describe the rate of change of 

the momenta, a singularity occurs at the origin (i.e. when 0=x  and 0=y ). This creates 

problems for the numerical integrators dealing with trajectories close the origin due to the 

steepness of the 5.022 )( −+ yx  term. This term accentuates the errors introduced in the 

discretization of continuous differential equations, reducing the accuracy of all the integrators. 
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Fig 13. RMSEδ versus 4η , Conditions: ]100,0[,5.1,5.0,5.1,1.0],02.0,0008.0[

0000 ∈=−===∈ tppyx yxη , 

3=K and (19). System displaying chaotic motion with discrete energy jumps in the solutions. 

 

 Comparing Figure 13 with Figure 11 it is clear the energy jumps are causing a 

detrimental effect on integrator performance. In Figure 13 the energy errors are five orders of 

magnitude greater for a given value ofη . However the use of the energy error to measure the 
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effect of the jumps is questionable, as the solution energy is now unbounded and hence 

measure is heavily dependent on the trajectory (for example how many times the origin is 

approached in the given time period) and the time step. 

 To quantify the effect of the jumps on a numerical solution to such a trajectory, we use 

a statistical approach. Jump locations are established by detecting where the solution 

trajectory is arbitrarily close to the origin and then the size of the jump in energy is calculated 

from the differences in mean energies between the jumps. We then develop a measure for the 

‘average’ jump size over the simulation and see how this is related to the time step.  
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Fig 14a. Graph of log(jump measure) versus )log(η  for Blanes & Moan integrator with initial update in position. 

Conditions: ]10000,0[,5.1,5.0,5.1,1.0],0017.0,00015.0[
0000 ∈=−===∈ tppyx yxη , 3=K and (19). 

Number of jumps in simulation 299= . Black overlay of linear best fit for 2J . 
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Fig 14b. Graph of log(jump measure) versus )log(η  for modified integrator with initial update in momentum.  

Conditions: ]10000,0[,5.1,5.0,5.1,1.0],0017.0,00015.0[
0000 ∈=−===∈ tppyx yxη , 3=K and (19). 

Number of jumps in simulation 314= . Black overlay of linear best fit for 2J . 
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 A mean of the jump sizes could be distorted by a number of ‘small’ jumps with 

relatively little impact on the dynamics, when in fact the larger jumps cause the greatest errors 

in the solution due to the drift in the solution energy from the exact Hamiltonian. To account 

for this phenomenon ‘weighted’ averages of the jumps are calculated, 
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(24), 

where kj  are individual jump sizes and k  indexes all the jumps in the simulation. As n 

increases the average is skewed towards accounting for just the larger jumps. 

 Figures 14 show, as expected, that the jump sizes reduce as the time step decreases. As 

n increases the jump size measures nJ  converge towards the limit of the largest jump size in 

the simulation. Jump measure 2J  is taken as the best measure of the average jump size with a 

tangible contribution to the energy errors.  The overlaid black lines on the graphs are linear 

lines of best fit for 2J . Depending on the initial conditions of the system and the range of 

time steps examined the gradient of these lines vary, which indicates that a power law 

relationship between the jump size measure 2J  and the time step measure ( tΔ  or η ) is 

incorrect. However this is to be expected as the theoretical convergence measures do not 

apply for non-analytic functions. There is also no evidence for any integrator handling the 

computational problems caused by the singularity better than any others, which agrees with 

the breakdown of the error measure graphs (Figure 13). 

 A method for examining the extent to energy jumps are degradation in the accuracy of 

the numerical solution is proposed. An energy fluctuation kRMSE )(δ  is calculated from the 

sections of the trajectory in between the energy jumps, i.e. the sections of the motion in 

between points where the trajectory approaches the origin. A time weighted average over 

these sections is calculated forming an effective energy fluctuation value for the solution, 
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(25), 

where kt  is the length of time of section k. Clearly this effective energy fluctuation measure is 

always less than the overall energy error ( RMSRMS EE δδ ≤
~ ). The smaller the difference between 

these two values, the lessening effect of the energy jumps on the solution accuracy. Future 



Alex Malins   14/03/2007 
 

24 

study could examine how the magnitude of this difference translates to the stability and 

accuracy of the solution. 
 

6.2 Results and Discussion – Lennard-Jones Fluid 
 A Lennard-Jones fluid of N particles has a total of 4N positions and momenta. During 

the initialization of the simulation particles are randomly placed in a cube centred on the 

origin.  
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Fig 15. Graph of energy versus time for ten particle Lennard-Jones fluid. Particles initialised in random positions 

within a cube of side length 2 centred on the origin, with zero initial momentum. Simulation integrator Blanes & 

Moan position first. Conditions: ]50,0[,01.0 ∈=Δ tt  and (20). 

 

 Figure 15 displays the solution energy for a Lennard-Jones simulation. It shows 

similar traits to the Figure 12b, with discrete jumps in the solution energy and relatively small 

oscillations in the energy in between the jumps. For two particles within a short range there is 

a strong repulsive force, resulting from the singularity in the Lennard-Jones potential at zero 

separation, which acts to separate them. Like the singularity in Hamilton’s equations for the 

spring pendulum, this accentuates the errors introduced in discretization, causing problems for 

all the integrators. 

 The theoretical rates of convergence for the error measures are not mirrored in any of 

the numerical results, except in trivial cases. The accuracy of the solutions over long time 

periods is questionable, as the solution energy often drifts far from the exact Hamiltonian, in a 

situation similar to that of the time-irreversible Euler integrator on the simple pendulum. 
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7. Conclusions 
 The first result we note is that symplectic integrators produce more accurate solutions 

to time irreversible integrators on the simple pendulum system. On the same system the fourth 

order symplectic integrators are more economical in computational terms than the second 

order Verlet scheme. There is no evidence to support the claim that the modified Hamiltonian 

integrators are more efficient than any of the standard fourth order symplectic integrators, 

other than the most basic of which by Forest & Ruth. 

 The spring pendulum is described by non-analytic ordinary differential equations. 

These are continuous everywhere but the origin and all the results for the simple pendulum in 

the above paragraph transfer to numerical solutions to trajectories everywhere away from the 

origin singularity, regardless of the type of motion displayed by that trajectory. To stress 

again, there is no case for the modified Hamiltonian integrators having the highest 

computational efficiency. 

 We note the performance of all the integrators reduces for trajectories which approach 

the origin singularity, and because of this the theoretical performance measures lose their 

value in the analysis of the integrators. The numerical solutions resulting from such 

trajectories display discrete jumps in energy, which cast doubt over validity of the solution 

over long time periods of simulation. Numerical solutions for the Lennard-Jones fluid also 

display discrete energy jumps in the solution for all but the most trivial cases. There is no case 

for any of the integrators dealing with the jumps best, which indicates that using smaller time 

steps for the most basic symplectic integrators may prove more efficient than employing more 

computationally expensive schemes. Future research could test this claim and study further 

the performance of the numerical integrators on non-analytic ordinary to differential 

equations in order establish the most computationally efficient approach to solving them. 
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